Loading…

Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin

New drug delivery systems are a potential solution for administering drugs to reduce common side effects of traditional methods, such as in cancer therapy. Iron oxide nanoparticles (IONs) can increase the drugs' biological activity through high binding efficiency and magnetically targeted drug...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceuticals (Basel, Switzerland) Switzerland), 2021-04, Vol.14 (5), p.405
Main Authors: Turrina, Chiara, Berensmeier, Sonja, Schwaminger, Sebastian P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-ae50a1f2b6261ce61acbc507eda50bed94f643fc60db80872722208802cf2c143
cites cdi_FETCH-LOGICAL-c472t-ae50a1f2b6261ce61acbc507eda50bed94f643fc60db80872722208802cf2c143
container_end_page
container_issue 5
container_start_page 405
container_title Pharmaceuticals (Basel, Switzerland)
container_volume 14
creator Turrina, Chiara
Berensmeier, Sonja
Schwaminger, Sebastian P
description New drug delivery systems are a potential solution for administering drugs to reduce common side effects of traditional methods, such as in cancer therapy. Iron oxide nanoparticles (IONs) can increase the drugs' biological activity through high binding efficiency and magnetically targeted drug delivery. Understanding the adsorption and release process of a drug to the carrier material plays a significant role in research to generate an applicable and controlled drug delivery system. This contribution focuses on the binding patterns of the peptide lasioglossin III from bee venom on bare IONs. Lasioglossin has a high antimicrobial behavior and due to its cationic properties, it has high binding potential. Considering the influence of pH, the buffer type, the particle concentration, and time, the highest drug loading of 22.7% is achieved in phosphate-buffered saline. Analysis of the desorption conditions revealed temperature and salt concentration sensitivity. The nanoparticles and peptide-ION complexes are analyzed with dynamic light scattering, zeta potential, and infrared spectroscopy. Additionally, cytotoxicity experiments performed on show higher antimicrobial activity of bound lasioglossin than of the free peptide. Therefore, bare IONs are an interesting platform material for the development of drug-delivery carriers for cationic peptides.
doi_str_mv 10.3390/ph14050405
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9045da2fec814c54a1a0a664b2ee91c8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9045da2fec814c54a1a0a664b2ee91c8</doaj_id><sourcerecordid>2532172168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-ae50a1f2b6261ce61acbc507eda50bed94f643fc60db80872722208802cf2c143</originalsourceid><addsrcrecordid>eNpdkt9v0zAQgC0EYj_ghT8AWeIFTSqzL46TvCBBB6NSxZCAZ-viXFpXaZzZycT-e1zajW0Plq3z509352PsjRQfsqwS58NaKpGLtJ6xY6lAzUpQxfMH5yN2EuNGiLyQSr5kR-kZZADVMas_YyC-CL7nV39cQ_w79n7AMDrbUeQY-UWYVvyCOndD4ZbPMQRHgbc-8HFN_OfahzFFR-d7Z_kPGsadZYnR-VXnY3T9K_aixS7S68N-yn5__fJr_m22vLpczD8tZ1YVMM6QcoGyhVqDlpa0RFvbXBTUYC5qairVapW1VoumLkVZQAEAoiwF2BasVNkpW-y9jceNGYLbYrg1Hp35F_BhZQ51mUqovEFoyZZS2VyhRIFaqxqIKmnL5Pq4dw1TvaXGUj8G7B5JH9_0bm1W_sYkn67kTvD-IAj-eqI4mq2LlroOe_JTNJCn3AtRqiqh756gGz-FPrUqURnIAqTeCc_2lA2pq4Ha-2SkMLsxMP_HIMFvH6Z_j979e_YX92mtSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532172168</pqid></control><display><type>article</type><title>Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Turrina, Chiara ; Berensmeier, Sonja ; Schwaminger, Sebastian P</creator><creatorcontrib>Turrina, Chiara ; Berensmeier, Sonja ; Schwaminger, Sebastian P</creatorcontrib><description>New drug delivery systems are a potential solution for administering drugs to reduce common side effects of traditional methods, such as in cancer therapy. Iron oxide nanoparticles (IONs) can increase the drugs' biological activity through high binding efficiency and magnetically targeted drug delivery. Understanding the adsorption and release process of a drug to the carrier material plays a significant role in research to generate an applicable and controlled drug delivery system. This contribution focuses on the binding patterns of the peptide lasioglossin III from bee venom on bare IONs. Lasioglossin has a high antimicrobial behavior and due to its cationic properties, it has high binding potential. Considering the influence of pH, the buffer type, the particle concentration, and time, the highest drug loading of 22.7% is achieved in phosphate-buffered saline. Analysis of the desorption conditions revealed temperature and salt concentration sensitivity. The nanoparticles and peptide-ION complexes are analyzed with dynamic light scattering, zeta potential, and infrared spectroscopy. Additionally, cytotoxicity experiments performed on show higher antimicrobial activity of bound lasioglossin than of the free peptide. Therefore, bare IONs are an interesting platform material for the development of drug-delivery carriers for cationic peptides.</description><identifier>ISSN: 1424-8247</identifier><identifier>EISSN: 1424-8247</identifier><identifier>DOI: 10.3390/ph14050405</identifier><identifier>PMID: 33923229</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adsorption ; agglomeration behavior in human serum ; Antimicrobial agents ; antimicrobial behavior ; cationic peptide ; Crystal structure ; Drug delivery systems ; Experiments ; Gram-positive bacteria ; Influence ; iron oxide nanoparticles ; lasioglossin ; Magnetic fields ; magnetically controlled drug delivery ; Nanoparticles ; Particle size ; Peptides</subject><ispartof>Pharmaceuticals (Basel, Switzerland), 2021-04, Vol.14 (5), p.405</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-ae50a1f2b6261ce61acbc507eda50bed94f643fc60db80872722208802cf2c143</citedby><cites>FETCH-LOGICAL-c472t-ae50a1f2b6261ce61acbc507eda50bed94f643fc60db80872722208802cf2c143</cites><orcidid>0000-0001-8974-7589 ; 0000-0002-4943-848X ; 0000-0002-8627-0807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2532172168/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2532172168?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33923229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turrina, Chiara</creatorcontrib><creatorcontrib>Berensmeier, Sonja</creatorcontrib><creatorcontrib>Schwaminger, Sebastian P</creatorcontrib><title>Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin</title><title>Pharmaceuticals (Basel, Switzerland)</title><addtitle>Pharmaceuticals (Basel)</addtitle><description>New drug delivery systems are a potential solution for administering drugs to reduce common side effects of traditional methods, such as in cancer therapy. Iron oxide nanoparticles (IONs) can increase the drugs' biological activity through high binding efficiency and magnetically targeted drug delivery. Understanding the adsorption and release process of a drug to the carrier material plays a significant role in research to generate an applicable and controlled drug delivery system. This contribution focuses on the binding patterns of the peptide lasioglossin III from bee venom on bare IONs. Lasioglossin has a high antimicrobial behavior and due to its cationic properties, it has high binding potential. Considering the influence of pH, the buffer type, the particle concentration, and time, the highest drug loading of 22.7% is achieved in phosphate-buffered saline. Analysis of the desorption conditions revealed temperature and salt concentration sensitivity. The nanoparticles and peptide-ION complexes are analyzed with dynamic light scattering, zeta potential, and infrared spectroscopy. Additionally, cytotoxicity experiments performed on show higher antimicrobial activity of bound lasioglossin than of the free peptide. Therefore, bare IONs are an interesting platform material for the development of drug-delivery carriers for cationic peptides.</description><subject>Adsorption</subject><subject>agglomeration behavior in human serum</subject><subject>Antimicrobial agents</subject><subject>antimicrobial behavior</subject><subject>cationic peptide</subject><subject>Crystal structure</subject><subject>Drug delivery systems</subject><subject>Experiments</subject><subject>Gram-positive bacteria</subject><subject>Influence</subject><subject>iron oxide nanoparticles</subject><subject>lasioglossin</subject><subject>Magnetic fields</subject><subject>magnetically controlled drug delivery</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Peptides</subject><issn>1424-8247</issn><issn>1424-8247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9v0zAQgC0EYj_ghT8AWeIFTSqzL46TvCBBB6NSxZCAZ-viXFpXaZzZycT-e1zajW0Plq3z509352PsjRQfsqwS58NaKpGLtJ6xY6lAzUpQxfMH5yN2EuNGiLyQSr5kR-kZZADVMas_YyC-CL7nV39cQ_w79n7AMDrbUeQY-UWYVvyCOndD4ZbPMQRHgbc-8HFN_OfahzFFR-d7Z_kPGsadZYnR-VXnY3T9K_aixS7S68N-yn5__fJr_m22vLpczD8tZ1YVMM6QcoGyhVqDlpa0RFvbXBTUYC5qairVapW1VoumLkVZQAEAoiwF2BasVNkpW-y9jceNGYLbYrg1Hp35F_BhZQ51mUqovEFoyZZS2VyhRIFaqxqIKmnL5Pq4dw1TvaXGUj8G7B5JH9_0bm1W_sYkn67kTvD-IAj-eqI4mq2LlroOe_JTNJCn3AtRqiqh756gGz-FPrUqURnIAqTeCc_2lA2pq4Ha-2SkMLsxMP_HIMFvH6Z_j979e_YX92mtSQ</recordid><startdate>20210424</startdate><enddate>20210424</enddate><creator>Turrina, Chiara</creator><creator>Berensmeier, Sonja</creator><creator>Schwaminger, Sebastian P</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8974-7589</orcidid><orcidid>https://orcid.org/0000-0002-4943-848X</orcidid><orcidid>https://orcid.org/0000-0002-8627-0807</orcidid></search><sort><creationdate>20210424</creationdate><title>Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin</title><author>Turrina, Chiara ; Berensmeier, Sonja ; Schwaminger, Sebastian P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-ae50a1f2b6261ce61acbc507eda50bed94f643fc60db80872722208802cf2c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>agglomeration behavior in human serum</topic><topic>Antimicrobial agents</topic><topic>antimicrobial behavior</topic><topic>cationic peptide</topic><topic>Crystal structure</topic><topic>Drug delivery systems</topic><topic>Experiments</topic><topic>Gram-positive bacteria</topic><topic>Influence</topic><topic>iron oxide nanoparticles</topic><topic>lasioglossin</topic><topic>Magnetic fields</topic><topic>magnetically controlled drug delivery</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Peptides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turrina, Chiara</creatorcontrib><creatorcontrib>Berensmeier, Sonja</creatorcontrib><creatorcontrib>Schwaminger, Sebastian P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Pharmaceuticals (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turrina, Chiara</au><au>Berensmeier, Sonja</au><au>Schwaminger, Sebastian P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin</atitle><jtitle>Pharmaceuticals (Basel, Switzerland)</jtitle><addtitle>Pharmaceuticals (Basel)</addtitle><date>2021-04-24</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>405</spage><pages>405-</pages><issn>1424-8247</issn><eissn>1424-8247</eissn><abstract>New drug delivery systems are a potential solution for administering drugs to reduce common side effects of traditional methods, such as in cancer therapy. Iron oxide nanoparticles (IONs) can increase the drugs' biological activity through high binding efficiency and magnetically targeted drug delivery. Understanding the adsorption and release process of a drug to the carrier material plays a significant role in research to generate an applicable and controlled drug delivery system. This contribution focuses on the binding patterns of the peptide lasioglossin III from bee venom on bare IONs. Lasioglossin has a high antimicrobial behavior and due to its cationic properties, it has high binding potential. Considering the influence of pH, the buffer type, the particle concentration, and time, the highest drug loading of 22.7% is achieved in phosphate-buffered saline. Analysis of the desorption conditions revealed temperature and salt concentration sensitivity. The nanoparticles and peptide-ION complexes are analyzed with dynamic light scattering, zeta potential, and infrared spectroscopy. Additionally, cytotoxicity experiments performed on show higher antimicrobial activity of bound lasioglossin than of the free peptide. Therefore, bare IONs are an interesting platform material for the development of drug-delivery carriers for cationic peptides.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33923229</pmid><doi>10.3390/ph14050405</doi><orcidid>https://orcid.org/0000-0001-8974-7589</orcidid><orcidid>https://orcid.org/0000-0002-4943-848X</orcidid><orcidid>https://orcid.org/0000-0002-8627-0807</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8247
ispartof Pharmaceuticals (Basel, Switzerland), 2021-04, Vol.14 (5), p.405
issn 1424-8247
1424-8247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9045da2fec814c54a1a0a664b2ee91c8
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Adsorption
agglomeration behavior in human serum
Antimicrobial agents
antimicrobial behavior
cationic peptide
Crystal structure
Drug delivery systems
Experiments
Gram-positive bacteria
Influence
iron oxide nanoparticles
lasioglossin
Magnetic fields
magnetically controlled drug delivery
Nanoparticles
Particle size
Peptides
title Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bare%20Iron%20Oxide%20Nanoparticles%20as%20Drug%20Delivery%20Carrier%20for%20the%20Short%20Cationic%20Peptide%20Lasioglossin&rft.jtitle=Pharmaceuticals%20(Basel,%20Switzerland)&rft.au=Turrina,%20Chiara&rft.date=2021-04-24&rft.volume=14&rft.issue=5&rft.spage=405&rft.pages=405-&rft.issn=1424-8247&rft.eissn=1424-8247&rft_id=info:doi/10.3390/ph14050405&rft_dat=%3Cproquest_doaj_%3E2532172168%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-ae50a1f2b6261ce61acbc507eda50bed94f643fc60db80872722208802cf2c143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2532172168&rft_id=info:pmid/33923229&rfr_iscdi=true