Loading…
Premelting increases the rate of regelation by an order of magnitude
Glacier sliding over small obstacles relies on melting on their upstream sides and refreezing downstream. Previous treatments have appealed to ‘pressure melting’ as the cause of the spatial variations in melting temperature that drive this regelation process. However, we show that typical liquid pre...
Saved in:
Published in: | Journal of glaciology 2019-06, Vol.65 (251), p.518-521 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63 |
container_end_page | 521 |
container_issue | 251 |
container_start_page | 518 |
container_title | Journal of glaciology |
container_volume | 65 |
creator | REMPEL, ALAN W. MEYER, COLIN R. |
description | Glacier sliding over small obstacles relies on melting on their upstream sides and refreezing downstream. Previous treatments have appealed to ‘pressure melting’ as the cause of the spatial variations in melting temperature that drive this regelation process. However, we show that typical liquid pressure variations across small obstacles are negligible and therefore variations in ice pressure closely approximate variations in effective stress. For a given change in effective stress, the equilibrium melting temperature changes by an order of magnitude more than when the pressure of ice and liquid both change by an equal amount. In consequence, the temperature gradients that drive heat flow across small obstacles are larger than previously recognized and the rate of regelation is faster. Under typical conditions, the transition wavelength at which ice deformation and regelation contribute equally is of m-scale, several times longer than previous predictions, which have been reported to underestimate field inferences. |
doi_str_mv | 10.1017/jog.2019.33 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_904f71b17fcd4edb99310e0b002148fa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jog_2019_33</cupid><doaj_id>oai_doaj_org_article_904f71b17fcd4edb99310e0b002148fa</doaj_id><sourcerecordid>2235004015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63</originalsourceid><addsrcrecordid>eNptkE1PwzAMhiMEEmNw4g9U4og67Hy0zRGNr0mT4LB7lKRuabU1I-0O-_d0bIILJ8v249f2y9gtwgwB84c21DMOqGdCnLEJ5jxPVab4OZsAcJ6iFHDJrvq-HVOtECfs6SPShtZD09VJ0_lItqc-GT4piXagJFRJpJrWdmhCl7h9YrskxJLiobOxddcMu5Ku2UVl1z3dnOKUrV6eV_O3dPn-upg_LlMvgQ-p4EqD8-SzQiMo6VDLQoH3VpAuCpWVUlHuSKFA8iRLVCAzyzlaJ1wmpmxxlC2Dbc02Nhsb9ybYxvwUQqyNjUPj12Q0yCpHh3nlS0ml01ogELjxb5RFZUetu6PWNoavHfWDacMuduP1hnOhACSgGqn7I-Vj6PtI1e9WBHNwfJyqzcFxI8RIpyfablxsypr-RP_jvwFqFIC_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235004015</pqid></control><display><type>article</type><title>Premelting increases the rate of regelation by an order of magnitude</title><source>Publicly Available Content Database</source><source>Cambridge University Press</source><creator>REMPEL, ALAN W. ; MEYER, COLIN R.</creator><creatorcontrib>REMPEL, ALAN W. ; MEYER, COLIN R.</creatorcontrib><description>Glacier sliding over small obstacles relies on melting on their upstream sides and refreezing downstream. Previous treatments have appealed to ‘pressure melting’ as the cause of the spatial variations in melting temperature that drive this regelation process. However, we show that typical liquid pressure variations across small obstacles are negligible and therefore variations in ice pressure closely approximate variations in effective stress. For a given change in effective stress, the equilibrium melting temperature changes by an order of magnitude more than when the pressure of ice and liquid both change by an equal amount. In consequence, the temperature gradients that drive heat flow across small obstacles are larger than previously recognized and the rate of regelation is faster. Under typical conditions, the transition wavelength at which ice deformation and regelation contribute equally is of m-scale, several times longer than previous predictions, which have been reported to underestimate field inferences.</description><identifier>ISSN: 0022-1430</identifier><identifier>EISSN: 1727-5652</identifier><identifier>DOI: 10.1017/jog.2019.33</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Barriers ; Deformation ; Deformation mechanisms ; Equilibrium ; glacier modeling ; Glaciers ; Heat ; Heat flow ; Heat transmission ; Ice ; ice dynamics ; ice physics ; Ice pressure ; Melt temperature ; melt-basal ; Melting ; Permeability ; Pressure ; Pressure variations ; Reynolds number ; Spatial variations ; subglacial processes ; Temperature changes ; Temperature effects ; Temperature gradients ; Velocity ; Wavelength</subject><ispartof>Journal of glaciology, 2019-06, Vol.65 (251), p.518-521</ispartof><rights>Copyright © The Author(s) 2019</rights><rights>2019 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63</citedby><cites>FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2235004015/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2235004015?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,72960,75126</link.rule.ids></links><search><creatorcontrib>REMPEL, ALAN W.</creatorcontrib><creatorcontrib>MEYER, COLIN R.</creatorcontrib><title>Premelting increases the rate of regelation by an order of magnitude</title><title>Journal of glaciology</title><addtitle>J. Glaciol</addtitle><description>Glacier sliding over small obstacles relies on melting on their upstream sides and refreezing downstream. Previous treatments have appealed to ‘pressure melting’ as the cause of the spatial variations in melting temperature that drive this regelation process. However, we show that typical liquid pressure variations across small obstacles are negligible and therefore variations in ice pressure closely approximate variations in effective stress. For a given change in effective stress, the equilibrium melting temperature changes by an order of magnitude more than when the pressure of ice and liquid both change by an equal amount. In consequence, the temperature gradients that drive heat flow across small obstacles are larger than previously recognized and the rate of regelation is faster. Under typical conditions, the transition wavelength at which ice deformation and regelation contribute equally is of m-scale, several times longer than previous predictions, which have been reported to underestimate field inferences.</description><subject>Barriers</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Equilibrium</subject><subject>glacier modeling</subject><subject>Glaciers</subject><subject>Heat</subject><subject>Heat flow</subject><subject>Heat transmission</subject><subject>Ice</subject><subject>ice dynamics</subject><subject>ice physics</subject><subject>Ice pressure</subject><subject>Melt temperature</subject><subject>melt-basal</subject><subject>Melting</subject><subject>Permeability</subject><subject>Pressure</subject><subject>Pressure variations</subject><subject>Reynolds number</subject><subject>Spatial variations</subject><subject>subglacial processes</subject><subject>Temperature changes</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Velocity</subject><subject>Wavelength</subject><issn>0022-1430</issn><issn>1727-5652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkE1PwzAMhiMEEmNw4g9U4og67Hy0zRGNr0mT4LB7lKRuabU1I-0O-_d0bIILJ8v249f2y9gtwgwB84c21DMOqGdCnLEJ5jxPVab4OZsAcJ6iFHDJrvq-HVOtECfs6SPShtZD09VJ0_lItqc-GT4piXagJFRJpJrWdmhCl7h9YrskxJLiobOxddcMu5Ku2UVl1z3dnOKUrV6eV_O3dPn-upg_LlMvgQ-p4EqD8-SzQiMo6VDLQoH3VpAuCpWVUlHuSKFA8iRLVCAzyzlaJ1wmpmxxlC2Dbc02Nhsb9ybYxvwUQqyNjUPj12Q0yCpHh3nlS0ml01ogELjxb5RFZUetu6PWNoavHfWDacMuduP1hnOhACSgGqn7I-Vj6PtI1e9WBHNwfJyqzcFxI8RIpyfablxsypr-RP_jvwFqFIC_</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>REMPEL, ALAN W.</creator><creator>MEYER, COLIN R.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>201906</creationdate><title>Premelting increases the rate of regelation by an order of magnitude</title><author>REMPEL, ALAN W. ; MEYER, COLIN R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Barriers</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Equilibrium</topic><topic>glacier modeling</topic><topic>Glaciers</topic><topic>Heat</topic><topic>Heat flow</topic><topic>Heat transmission</topic><topic>Ice</topic><topic>ice dynamics</topic><topic>ice physics</topic><topic>Ice pressure</topic><topic>Melt temperature</topic><topic>melt-basal</topic><topic>Melting</topic><topic>Permeability</topic><topic>Pressure</topic><topic>Pressure variations</topic><topic>Reynolds number</topic><topic>Spatial variations</topic><topic>subglacial processes</topic><topic>Temperature changes</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Velocity</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>REMPEL, ALAN W.</creatorcontrib><creatorcontrib>MEYER, COLIN R.</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of glaciology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>REMPEL, ALAN W.</au><au>MEYER, COLIN R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Premelting increases the rate of regelation by an order of magnitude</atitle><jtitle>Journal of glaciology</jtitle><addtitle>J. Glaciol</addtitle><date>2019-06</date><risdate>2019</risdate><volume>65</volume><issue>251</issue><spage>518</spage><epage>521</epage><pages>518-521</pages><issn>0022-1430</issn><eissn>1727-5652</eissn><abstract>Glacier sliding over small obstacles relies on melting on their upstream sides and refreezing downstream. Previous treatments have appealed to ‘pressure melting’ as the cause of the spatial variations in melting temperature that drive this regelation process. However, we show that typical liquid pressure variations across small obstacles are negligible and therefore variations in ice pressure closely approximate variations in effective stress. For a given change in effective stress, the equilibrium melting temperature changes by an order of magnitude more than when the pressure of ice and liquid both change by an equal amount. In consequence, the temperature gradients that drive heat flow across small obstacles are larger than previously recognized and the rate of regelation is faster. Under typical conditions, the transition wavelength at which ice deformation and regelation contribute equally is of m-scale, several times longer than previous predictions, which have been reported to underestimate field inferences.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jog.2019.33</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1430 |
ispartof | Journal of glaciology, 2019-06, Vol.65 (251), p.518-521 |
issn | 0022-1430 1727-5652 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_904f71b17fcd4edb99310e0b002148fa |
source | Publicly Available Content Database; Cambridge University Press |
subjects | Barriers Deformation Deformation mechanisms Equilibrium glacier modeling Glaciers Heat Heat flow Heat transmission Ice ice dynamics ice physics Ice pressure Melt temperature melt-basal Melting Permeability Pressure Pressure variations Reynolds number Spatial variations subglacial processes Temperature changes Temperature effects Temperature gradients Velocity Wavelength |
title | Premelting increases the rate of regelation by an order of magnitude |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Premelting%20increases%20the%20rate%20of%20regelation%20by%20an%20order%20of%20magnitude&rft.jtitle=Journal%20of%20glaciology&rft.au=REMPEL,%20ALAN%20W.&rft.date=2019-06&rft.volume=65&rft.issue=251&rft.spage=518&rft.epage=521&rft.pages=518-521&rft.issn=0022-1430&rft.eissn=1727-5652&rft_id=info:doi/10.1017/jog.2019.33&rft_dat=%3Cproquest_doaj_%3E2235004015%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2235004015&rft_id=info:pmid/&rft_cupid=10_1017_jog_2019_33&rfr_iscdi=true |