Loading…

Premelting increases the rate of regelation by an order of magnitude

Glacier sliding over small obstacles relies on melting on their upstream sides and refreezing downstream. Previous treatments have appealed to ‘pressure melting’ as the cause of the spatial variations in melting temperature that drive this regelation process. However, we show that typical liquid pre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of glaciology 2019-06, Vol.65 (251), p.518-521
Main Authors: REMPEL, ALAN W., MEYER, COLIN R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63
cites cdi_FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63
container_end_page 521
container_issue 251
container_start_page 518
container_title Journal of glaciology
container_volume 65
creator REMPEL, ALAN W.
MEYER, COLIN R.
description Glacier sliding over small obstacles relies on melting on their upstream sides and refreezing downstream. Previous treatments have appealed to ‘pressure melting’ as the cause of the spatial variations in melting temperature that drive this regelation process. However, we show that typical liquid pressure variations across small obstacles are negligible and therefore variations in ice pressure closely approximate variations in effective stress. For a given change in effective stress, the equilibrium melting temperature changes by an order of magnitude more than when the pressure of ice and liquid both change by an equal amount. In consequence, the temperature gradients that drive heat flow across small obstacles are larger than previously recognized and the rate of regelation is faster. Under typical conditions, the transition wavelength at which ice deformation and regelation contribute equally is of m-scale, several times longer than previous predictions, which have been reported to underestimate field inferences.
doi_str_mv 10.1017/jog.2019.33
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_904f71b17fcd4edb99310e0b002148fa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jog_2019_33</cupid><doaj_id>oai_doaj_org_article_904f71b17fcd4edb99310e0b002148fa</doaj_id><sourcerecordid>2235004015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63</originalsourceid><addsrcrecordid>eNptkE1PwzAMhiMEEmNw4g9U4og67Hy0zRGNr0mT4LB7lKRuabU1I-0O-_d0bIILJ8v249f2y9gtwgwB84c21DMOqGdCnLEJ5jxPVab4OZsAcJ6iFHDJrvq-HVOtECfs6SPShtZD09VJ0_lItqc-GT4piXagJFRJpJrWdmhCl7h9YrskxJLiobOxddcMu5Ku2UVl1z3dnOKUrV6eV_O3dPn-upg_LlMvgQ-p4EqD8-SzQiMo6VDLQoH3VpAuCpWVUlHuSKFA8iRLVCAzyzlaJ1wmpmxxlC2Dbc02Nhsb9ybYxvwUQqyNjUPj12Q0yCpHh3nlS0ml01ogELjxb5RFZUetu6PWNoavHfWDacMuduP1hnOhACSgGqn7I-Vj6PtI1e9WBHNwfJyqzcFxI8RIpyfablxsypr-RP_jvwFqFIC_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235004015</pqid></control><display><type>article</type><title>Premelting increases the rate of regelation by an order of magnitude</title><source>Publicly Available Content Database</source><source>Cambridge University Press</source><creator>REMPEL, ALAN W. ; MEYER, COLIN R.</creator><creatorcontrib>REMPEL, ALAN W. ; MEYER, COLIN R.</creatorcontrib><description>Glacier sliding over small obstacles relies on melting on their upstream sides and refreezing downstream. Previous treatments have appealed to ‘pressure melting’ as the cause of the spatial variations in melting temperature that drive this regelation process. However, we show that typical liquid pressure variations across small obstacles are negligible and therefore variations in ice pressure closely approximate variations in effective stress. For a given change in effective stress, the equilibrium melting temperature changes by an order of magnitude more than when the pressure of ice and liquid both change by an equal amount. In consequence, the temperature gradients that drive heat flow across small obstacles are larger than previously recognized and the rate of regelation is faster. Under typical conditions, the transition wavelength at which ice deformation and regelation contribute equally is of m-scale, several times longer than previous predictions, which have been reported to underestimate field inferences.</description><identifier>ISSN: 0022-1430</identifier><identifier>EISSN: 1727-5652</identifier><identifier>DOI: 10.1017/jog.2019.33</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Barriers ; Deformation ; Deformation mechanisms ; Equilibrium ; glacier modeling ; Glaciers ; Heat ; Heat flow ; Heat transmission ; Ice ; ice dynamics ; ice physics ; Ice pressure ; Melt temperature ; melt-basal ; Melting ; Permeability ; Pressure ; Pressure variations ; Reynolds number ; Spatial variations ; subglacial processes ; Temperature changes ; Temperature effects ; Temperature gradients ; Velocity ; Wavelength</subject><ispartof>Journal of glaciology, 2019-06, Vol.65 (251), p.518-521</ispartof><rights>Copyright © The Author(s) 2019</rights><rights>2019 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63</citedby><cites>FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2235004015/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2235004015?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,72960,75126</link.rule.ids></links><search><creatorcontrib>REMPEL, ALAN W.</creatorcontrib><creatorcontrib>MEYER, COLIN R.</creatorcontrib><title>Premelting increases the rate of regelation by an order of magnitude</title><title>Journal of glaciology</title><addtitle>J. Glaciol</addtitle><description>Glacier sliding over small obstacles relies on melting on their upstream sides and refreezing downstream. Previous treatments have appealed to ‘pressure melting’ as the cause of the spatial variations in melting temperature that drive this regelation process. However, we show that typical liquid pressure variations across small obstacles are negligible and therefore variations in ice pressure closely approximate variations in effective stress. For a given change in effective stress, the equilibrium melting temperature changes by an order of magnitude more than when the pressure of ice and liquid both change by an equal amount. In consequence, the temperature gradients that drive heat flow across small obstacles are larger than previously recognized and the rate of regelation is faster. Under typical conditions, the transition wavelength at which ice deformation and regelation contribute equally is of m-scale, several times longer than previous predictions, which have been reported to underestimate field inferences.</description><subject>Barriers</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Equilibrium</subject><subject>glacier modeling</subject><subject>Glaciers</subject><subject>Heat</subject><subject>Heat flow</subject><subject>Heat transmission</subject><subject>Ice</subject><subject>ice dynamics</subject><subject>ice physics</subject><subject>Ice pressure</subject><subject>Melt temperature</subject><subject>melt-basal</subject><subject>Melting</subject><subject>Permeability</subject><subject>Pressure</subject><subject>Pressure variations</subject><subject>Reynolds number</subject><subject>Spatial variations</subject><subject>subglacial processes</subject><subject>Temperature changes</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Velocity</subject><subject>Wavelength</subject><issn>0022-1430</issn><issn>1727-5652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkE1PwzAMhiMEEmNw4g9U4og67Hy0zRGNr0mT4LB7lKRuabU1I-0O-_d0bIILJ8v249f2y9gtwgwB84c21DMOqGdCnLEJ5jxPVab4OZsAcJ6iFHDJrvq-HVOtECfs6SPShtZD09VJ0_lItqc-GT4piXagJFRJpJrWdmhCl7h9YrskxJLiobOxddcMu5Ku2UVl1z3dnOKUrV6eV_O3dPn-upg_LlMvgQ-p4EqD8-SzQiMo6VDLQoH3VpAuCpWVUlHuSKFA8iRLVCAzyzlaJ1wmpmxxlC2Dbc02Nhsb9ybYxvwUQqyNjUPj12Q0yCpHh3nlS0ml01ogELjxb5RFZUetu6PWNoavHfWDacMuduP1hnOhACSgGqn7I-Vj6PtI1e9WBHNwfJyqzcFxI8RIpyfablxsypr-RP_jvwFqFIC_</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>REMPEL, ALAN W.</creator><creator>MEYER, COLIN R.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>201906</creationdate><title>Premelting increases the rate of regelation by an order of magnitude</title><author>REMPEL, ALAN W. ; MEYER, COLIN R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Barriers</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Equilibrium</topic><topic>glacier modeling</topic><topic>Glaciers</topic><topic>Heat</topic><topic>Heat flow</topic><topic>Heat transmission</topic><topic>Ice</topic><topic>ice dynamics</topic><topic>ice physics</topic><topic>Ice pressure</topic><topic>Melt temperature</topic><topic>melt-basal</topic><topic>Melting</topic><topic>Permeability</topic><topic>Pressure</topic><topic>Pressure variations</topic><topic>Reynolds number</topic><topic>Spatial variations</topic><topic>subglacial processes</topic><topic>Temperature changes</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Velocity</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>REMPEL, ALAN W.</creatorcontrib><creatorcontrib>MEYER, COLIN R.</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of glaciology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>REMPEL, ALAN W.</au><au>MEYER, COLIN R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Premelting increases the rate of regelation by an order of magnitude</atitle><jtitle>Journal of glaciology</jtitle><addtitle>J. Glaciol</addtitle><date>2019-06</date><risdate>2019</risdate><volume>65</volume><issue>251</issue><spage>518</spage><epage>521</epage><pages>518-521</pages><issn>0022-1430</issn><eissn>1727-5652</eissn><abstract>Glacier sliding over small obstacles relies on melting on their upstream sides and refreezing downstream. Previous treatments have appealed to ‘pressure melting’ as the cause of the spatial variations in melting temperature that drive this regelation process. However, we show that typical liquid pressure variations across small obstacles are negligible and therefore variations in ice pressure closely approximate variations in effective stress. For a given change in effective stress, the equilibrium melting temperature changes by an order of magnitude more than when the pressure of ice and liquid both change by an equal amount. In consequence, the temperature gradients that drive heat flow across small obstacles are larger than previously recognized and the rate of regelation is faster. Under typical conditions, the transition wavelength at which ice deformation and regelation contribute equally is of m-scale, several times longer than previous predictions, which have been reported to underestimate field inferences.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jog.2019.33</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1430
ispartof Journal of glaciology, 2019-06, Vol.65 (251), p.518-521
issn 0022-1430
1727-5652
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_904f71b17fcd4edb99310e0b002148fa
source Publicly Available Content Database; Cambridge University Press
subjects Barriers
Deformation
Deformation mechanisms
Equilibrium
glacier modeling
Glaciers
Heat
Heat flow
Heat transmission
Ice
ice dynamics
ice physics
Ice pressure
Melt temperature
melt-basal
Melting
Permeability
Pressure
Pressure variations
Reynolds number
Spatial variations
subglacial processes
Temperature changes
Temperature effects
Temperature gradients
Velocity
Wavelength
title Premelting increases the rate of regelation by an order of magnitude
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Premelting%20increases%20the%20rate%20of%20regelation%20by%20an%20order%20of%20magnitude&rft.jtitle=Journal%20of%20glaciology&rft.au=REMPEL,%20ALAN%20W.&rft.date=2019-06&rft.volume=65&rft.issue=251&rft.spage=518&rft.epage=521&rft.pages=518-521&rft.issn=0022-1430&rft.eissn=1727-5652&rft_id=info:doi/10.1017/jog.2019.33&rft_dat=%3Cproquest_doaj_%3E2235004015%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-32590bcec6891054b194850cca3e98856d45e7be5131ece4d15046a221ab3b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2235004015&rft_id=info:pmid/&rft_cupid=10_1017_jog_2019_33&rfr_iscdi=true