Loading…

Development of Invisible Sensors and a Machine-Learning-Based Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns

This paper presents a novel bed-leaving sensor system for real-time recognition of bed-leaving behavior patterns. The proposed system comprises five pad sensors installed on a bed, a rail sensor inserted in a safety rail, and a behavior pattern recognizer based on machine learning. The linear charac...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-03, Vol.20 (5), p.1415
Main Authors: Madokoro, Hirokazu, Nakasho, Kazuhisa, Shimoi, Nobuhiro, Woo, Hanwool, Sato, Kazuhito
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773
cites cdi_FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773
container_end_page
container_issue 5
container_start_page 1415
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Madokoro, Hirokazu
Nakasho, Kazuhisa
Shimoi, Nobuhiro
Woo, Hanwool
Sato, Kazuhito
description This paper presents a novel bed-leaving sensor system for real-time recognition of bed-leaving behavior patterns. The proposed system comprises five pad sensors installed on a bed, a rail sensor inserted in a safety rail, and a behavior pattern recognizer based on machine learning. The linear characteristic between loads and output was obtained from a load test to evaluate sensor output characteristics. Moreover, the output values change linearly concomitantly with speed to attain the sensor with the equivalent load. We obtained benchmark datasets of continuous and discontinuous behavior patterns from ten subjects. Recognition targets using our sensor prototype and their monitoring system comprise five behavior patterns: sleeping, longitudinal sitting, lateral sitting, terminal sitting, and leaving the bed. We compared machine learning algorithms of five types to recognize five behavior patterns. The experimentally obtained results revealed that the proposed sensor system improved recognition accuracy for both datasets. Moreover, we achieved improved recognition accuracy after integration of learning datasets as a general discriminator.
doi_str_mv 10.3390/s20051415
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_906138c48b17418cbf365fdbecd5b21c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_906138c48b17418cbf365fdbecd5b21c</doaj_id><sourcerecordid>2375907073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773</originalsourceid><addsrcrecordid>eNpdkstuEzEUhkcIREthwQsgS2xgMeDLeOzZINEbRAqionRteTzHiaMZO9gzkfIovG2dpEQtKx8df_50_OsUxVuCPzHW4M-JYsxJRfiz4pRUtColpfj5o_qkeJXSCmPKGJMvixNGCccSN6fF30vYQB_WA_gRBYtmfuOSa3tAt-BTiAlp3yGNfmizdB7KOejonV-U5zpBh36BCQvvRhc8ut2mEQZ0t-vbENGVjv0W3UTonNkDWX_pkgl-dH4KU0Ln0O2Em-zL9TIX-dmNHkeIPr0uXljdJ3jzcJ4Vd9dXvy--l_Of32YXX-el4YyPZWtqCdhSKoWsrGAEbAda1rapJBWAZf6qqARIThvaNbrSpgbcGmObFqQQ7KyYHbxd0Cu1jm7QcauCdmrfCHGhdByd6UE1uCZMmkq2RFREmtaymtuuBdPxlhKTXV8OrvXUDtCZHGrU_RPp0xvvlmoRNkpgyQWvsuDDgyCGPxOkUQ05Meh77SEnpigTvMECC5bR9_-hqzBFn6PaU1QQzGWmPh4oE0NKEexxGILVbnnUcXky--7x9Efy37awe6MywTo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375271058</pqid></control><display><type>article</type><title>Development of Invisible Sensors and a Machine-Learning-Based Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Madokoro, Hirokazu ; Nakasho, Kazuhisa ; Shimoi, Nobuhiro ; Woo, Hanwool ; Sato, Kazuhito</creator><creatorcontrib>Madokoro, Hirokazu ; Nakasho, Kazuhisa ; Shimoi, Nobuhiro ; Woo, Hanwool ; Sato, Kazuhito</creatorcontrib><description>This paper presents a novel bed-leaving sensor system for real-time recognition of bed-leaving behavior patterns. The proposed system comprises five pad sensors installed on a bed, a rail sensor inserted in a safety rail, and a behavior pattern recognizer based on machine learning. The linear characteristic between loads and output was obtained from a load test to evaluate sensor output characteristics. Moreover, the output values change linearly concomitantly with speed to attain the sensor with the equivalent load. We obtained benchmark datasets of continuous and discontinuous behavior patterns from ten subjects. Recognition targets using our sensor prototype and their monitoring system comprise five behavior patterns: sleeping, longitudinal sitting, lateral sitting, terminal sitting, and leaving the bed. We compared machine learning algorithms of five types to recognize five behavior patterns. The experimentally obtained results revealed that the proposed sensor system improved recognition accuracy for both datasets. Moreover, we achieved improved recognition accuracy after integration of learning datasets as a general discriminator.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20051415</identifier><identifier>PMID: 32150809</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Aged ; Aging ; Algorithms ; ambient sensors ; Beds ; Cameras ; Caregivers ; Datasets ; home agent ; Humans ; Japan ; life monitoring ; Load ; Load tests ; Machine Learning ; Monitoring, Physiologic - instrumentation ; Nursing ; Older people ; Pattern recognition ; Polyethylene terephthalate ; quality of life ; random forest ; Security Measures ; Sensors</subject><ispartof>Sensors (Basel, Switzerland), 2020-03, Vol.20 (5), p.1415</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773</citedby><cites>FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773</cites><orcidid>0000-0002-8586-4304 ; 0000-0001-5485-2928 ; 0000-0003-1110-4342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2375271058/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2375271058?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32150809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Madokoro, Hirokazu</creatorcontrib><creatorcontrib>Nakasho, Kazuhisa</creatorcontrib><creatorcontrib>Shimoi, Nobuhiro</creatorcontrib><creatorcontrib>Woo, Hanwool</creatorcontrib><creatorcontrib>Sato, Kazuhito</creatorcontrib><title>Development of Invisible Sensors and a Machine-Learning-Based Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This paper presents a novel bed-leaving sensor system for real-time recognition of bed-leaving behavior patterns. The proposed system comprises five pad sensors installed on a bed, a rail sensor inserted in a safety rail, and a behavior pattern recognizer based on machine learning. The linear characteristic between loads and output was obtained from a load test to evaluate sensor output characteristics. Moreover, the output values change linearly concomitantly with speed to attain the sensor with the equivalent load. We obtained benchmark datasets of continuous and discontinuous behavior patterns from ten subjects. Recognition targets using our sensor prototype and their monitoring system comprise five behavior patterns: sleeping, longitudinal sitting, lateral sitting, terminal sitting, and leaving the bed. We compared machine learning algorithms of five types to recognize five behavior patterns. The experimentally obtained results revealed that the proposed sensor system improved recognition accuracy for both datasets. Moreover, we achieved improved recognition accuracy after integration of learning datasets as a general discriminator.</description><subject>Accuracy</subject><subject>Aged</subject><subject>Aging</subject><subject>Algorithms</subject><subject>ambient sensors</subject><subject>Beds</subject><subject>Cameras</subject><subject>Caregivers</subject><subject>Datasets</subject><subject>home agent</subject><subject>Humans</subject><subject>Japan</subject><subject>life monitoring</subject><subject>Load</subject><subject>Load tests</subject><subject>Machine Learning</subject><subject>Monitoring, Physiologic - instrumentation</subject><subject>Nursing</subject><subject>Older people</subject><subject>Pattern recognition</subject><subject>Polyethylene terephthalate</subject><subject>quality of life</subject><subject>random forest</subject><subject>Security Measures</subject><subject>Sensors</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkstuEzEUhkcIREthwQsgS2xgMeDLeOzZINEbRAqionRteTzHiaMZO9gzkfIovG2dpEQtKx8df_50_OsUxVuCPzHW4M-JYsxJRfiz4pRUtColpfj5o_qkeJXSCmPKGJMvixNGCccSN6fF30vYQB_WA_gRBYtmfuOSa3tAt-BTiAlp3yGNfmizdB7KOejonV-U5zpBh36BCQvvRhc8ut2mEQZ0t-vbENGVjv0W3UTonNkDWX_pkgl-dH4KU0Ln0O2Em-zL9TIX-dmNHkeIPr0uXljdJ3jzcJ4Vd9dXvy--l_Of32YXX-el4YyPZWtqCdhSKoWsrGAEbAda1rapJBWAZf6qqARIThvaNbrSpgbcGmObFqQQ7KyYHbxd0Cu1jm7QcauCdmrfCHGhdByd6UE1uCZMmkq2RFREmtaymtuuBdPxlhKTXV8OrvXUDtCZHGrU_RPp0xvvlmoRNkpgyQWvsuDDgyCGPxOkUQ05Meh77SEnpigTvMECC5bR9_-hqzBFn6PaU1QQzGWmPh4oE0NKEexxGILVbnnUcXky--7x9Efy37awe6MywTo</recordid><startdate>20200305</startdate><enddate>20200305</enddate><creator>Madokoro, Hirokazu</creator><creator>Nakasho, Kazuhisa</creator><creator>Shimoi, Nobuhiro</creator><creator>Woo, Hanwool</creator><creator>Sato, Kazuhito</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8586-4304</orcidid><orcidid>https://orcid.org/0000-0001-5485-2928</orcidid><orcidid>https://orcid.org/0000-0003-1110-4342</orcidid></search><sort><creationdate>20200305</creationdate><title>Development of Invisible Sensors and a Machine-Learning-Based Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns</title><author>Madokoro, Hirokazu ; Nakasho, Kazuhisa ; Shimoi, Nobuhiro ; Woo, Hanwool ; Sato, Kazuhito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Aged</topic><topic>Aging</topic><topic>Algorithms</topic><topic>ambient sensors</topic><topic>Beds</topic><topic>Cameras</topic><topic>Caregivers</topic><topic>Datasets</topic><topic>home agent</topic><topic>Humans</topic><topic>Japan</topic><topic>life monitoring</topic><topic>Load</topic><topic>Load tests</topic><topic>Machine Learning</topic><topic>Monitoring, Physiologic - instrumentation</topic><topic>Nursing</topic><topic>Older people</topic><topic>Pattern recognition</topic><topic>Polyethylene terephthalate</topic><topic>quality of life</topic><topic>random forest</topic><topic>Security Measures</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madokoro, Hirokazu</creatorcontrib><creatorcontrib>Nakasho, Kazuhisa</creatorcontrib><creatorcontrib>Shimoi, Nobuhiro</creatorcontrib><creatorcontrib>Woo, Hanwool</creatorcontrib><creatorcontrib>Sato, Kazuhito</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madokoro, Hirokazu</au><au>Nakasho, Kazuhisa</au><au>Shimoi, Nobuhiro</au><au>Woo, Hanwool</au><au>Sato, Kazuhito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Invisible Sensors and a Machine-Learning-Based Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-03-05</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>1415</spage><pages>1415-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This paper presents a novel bed-leaving sensor system for real-time recognition of bed-leaving behavior patterns. The proposed system comprises five pad sensors installed on a bed, a rail sensor inserted in a safety rail, and a behavior pattern recognizer based on machine learning. The linear characteristic between loads and output was obtained from a load test to evaluate sensor output characteristics. Moreover, the output values change linearly concomitantly with speed to attain the sensor with the equivalent load. We obtained benchmark datasets of continuous and discontinuous behavior patterns from ten subjects. Recognition targets using our sensor prototype and their monitoring system comprise five behavior patterns: sleeping, longitudinal sitting, lateral sitting, terminal sitting, and leaving the bed. We compared machine learning algorithms of five types to recognize five behavior patterns. The experimentally obtained results revealed that the proposed sensor system improved recognition accuracy for both datasets. Moreover, we achieved improved recognition accuracy after integration of learning datasets as a general discriminator.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32150809</pmid><doi>10.3390/s20051415</doi><orcidid>https://orcid.org/0000-0002-8586-4304</orcidid><orcidid>https://orcid.org/0000-0001-5485-2928</orcidid><orcidid>https://orcid.org/0000-0003-1110-4342</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-03, Vol.20 (5), p.1415
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_906138c48b17418cbf365fdbecd5b21c
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Accuracy
Aged
Aging
Algorithms
ambient sensors
Beds
Cameras
Caregivers
Datasets
home agent
Humans
Japan
life monitoring
Load
Load tests
Machine Learning
Monitoring, Physiologic - instrumentation
Nursing
Older people
Pattern recognition
Polyethylene terephthalate
quality of life
random forest
Security Measures
Sensors
title Development of Invisible Sensors and a Machine-Learning-Based Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Invisible%20Sensors%20and%20a%20Machine-Learning-Based%20Recognition%20System%20Used%20for%20Early%20Prediction%20of%20Discontinuous%20Bed-Leaving%20Behavior%20Patterns&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Madokoro,%20Hirokazu&rft.date=2020-03-05&rft.volume=20&rft.issue=5&rft.spage=1415&rft.pages=1415-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20051415&rft_dat=%3Cproquest_doaj_%3E2375907073%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2375271058&rft_id=info:pmid/32150809&rfr_iscdi=true