Loading…
Development of Invisible Sensors and a Machine-Learning-Based Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns
This paper presents a novel bed-leaving sensor system for real-time recognition of bed-leaving behavior patterns. The proposed system comprises five pad sensors installed on a bed, a rail sensor inserted in a safety rail, and a behavior pattern recognizer based on machine learning. The linear charac...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2020-03, Vol.20 (5), p.1415 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773 |
---|---|
cites | cdi_FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773 |
container_end_page | |
container_issue | 5 |
container_start_page | 1415 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Madokoro, Hirokazu Nakasho, Kazuhisa Shimoi, Nobuhiro Woo, Hanwool Sato, Kazuhito |
description | This paper presents a novel bed-leaving sensor system for real-time recognition of bed-leaving behavior patterns. The proposed system comprises five pad sensors installed on a bed, a rail sensor inserted in a safety rail, and a behavior pattern recognizer based on machine learning. The linear characteristic between loads and output was obtained from a load test to evaluate sensor output characteristics. Moreover, the output values change linearly concomitantly with speed to attain the sensor with the equivalent load. We obtained benchmark datasets of continuous and discontinuous behavior patterns from ten subjects. Recognition targets using our sensor prototype and their monitoring system comprise five behavior patterns: sleeping, longitudinal sitting, lateral sitting, terminal sitting, and leaving the bed. We compared machine learning algorithms of five types to recognize five behavior patterns. The experimentally obtained results revealed that the proposed sensor system improved recognition accuracy for both datasets. Moreover, we achieved improved recognition accuracy after integration of learning datasets as a general discriminator. |
doi_str_mv | 10.3390/s20051415 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_906138c48b17418cbf365fdbecd5b21c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_906138c48b17418cbf365fdbecd5b21c</doaj_id><sourcerecordid>2375907073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773</originalsourceid><addsrcrecordid>eNpdkstuEzEUhkcIREthwQsgS2xgMeDLeOzZINEbRAqionRteTzHiaMZO9gzkfIovG2dpEQtKx8df_50_OsUxVuCPzHW4M-JYsxJRfiz4pRUtColpfj5o_qkeJXSCmPKGJMvixNGCccSN6fF30vYQB_WA_gRBYtmfuOSa3tAt-BTiAlp3yGNfmizdB7KOejonV-U5zpBh36BCQvvRhc8ut2mEQZ0t-vbENGVjv0W3UTonNkDWX_pkgl-dH4KU0Ln0O2Em-zL9TIX-dmNHkeIPr0uXljdJ3jzcJ4Vd9dXvy--l_Of32YXX-el4YyPZWtqCdhSKoWsrGAEbAda1rapJBWAZf6qqARIThvaNbrSpgbcGmObFqQQ7KyYHbxd0Cu1jm7QcauCdmrfCHGhdByd6UE1uCZMmkq2RFREmtaymtuuBdPxlhKTXV8OrvXUDtCZHGrU_RPp0xvvlmoRNkpgyQWvsuDDgyCGPxOkUQ05Meh77SEnpigTvMECC5bR9_-hqzBFn6PaU1QQzGWmPh4oE0NKEexxGILVbnnUcXky--7x9Efy37awe6MywTo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375271058</pqid></control><display><type>article</type><title>Development of Invisible Sensors and a Machine-Learning-Based Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Madokoro, Hirokazu ; Nakasho, Kazuhisa ; Shimoi, Nobuhiro ; Woo, Hanwool ; Sato, Kazuhito</creator><creatorcontrib>Madokoro, Hirokazu ; Nakasho, Kazuhisa ; Shimoi, Nobuhiro ; Woo, Hanwool ; Sato, Kazuhito</creatorcontrib><description>This paper presents a novel bed-leaving sensor system for real-time recognition of bed-leaving behavior patterns. The proposed system comprises five pad sensors installed on a bed, a rail sensor inserted in a safety rail, and a behavior pattern recognizer based on machine learning. The linear characteristic between loads and output was obtained from a load test to evaluate sensor output characteristics. Moreover, the output values change linearly concomitantly with speed to attain the sensor with the equivalent load. We obtained benchmark datasets of continuous and discontinuous behavior patterns from ten subjects. Recognition targets using our sensor prototype and their monitoring system comprise five behavior patterns: sleeping, longitudinal sitting, lateral sitting, terminal sitting, and leaving the bed. We compared machine learning algorithms of five types to recognize five behavior patterns. The experimentally obtained results revealed that the proposed sensor system improved recognition accuracy for both datasets. Moreover, we achieved improved recognition accuracy after integration of learning datasets as a general discriminator.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20051415</identifier><identifier>PMID: 32150809</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Aged ; Aging ; Algorithms ; ambient sensors ; Beds ; Cameras ; Caregivers ; Datasets ; home agent ; Humans ; Japan ; life monitoring ; Load ; Load tests ; Machine Learning ; Monitoring, Physiologic - instrumentation ; Nursing ; Older people ; Pattern recognition ; Polyethylene terephthalate ; quality of life ; random forest ; Security Measures ; Sensors</subject><ispartof>Sensors (Basel, Switzerland), 2020-03, Vol.20 (5), p.1415</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773</citedby><cites>FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773</cites><orcidid>0000-0002-8586-4304 ; 0000-0001-5485-2928 ; 0000-0003-1110-4342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2375271058/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2375271058?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32150809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Madokoro, Hirokazu</creatorcontrib><creatorcontrib>Nakasho, Kazuhisa</creatorcontrib><creatorcontrib>Shimoi, Nobuhiro</creatorcontrib><creatorcontrib>Woo, Hanwool</creatorcontrib><creatorcontrib>Sato, Kazuhito</creatorcontrib><title>Development of Invisible Sensors and a Machine-Learning-Based Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This paper presents a novel bed-leaving sensor system for real-time recognition of bed-leaving behavior patterns. The proposed system comprises five pad sensors installed on a bed, a rail sensor inserted in a safety rail, and a behavior pattern recognizer based on machine learning. The linear characteristic between loads and output was obtained from a load test to evaluate sensor output characteristics. Moreover, the output values change linearly concomitantly with speed to attain the sensor with the equivalent load. We obtained benchmark datasets of continuous and discontinuous behavior patterns from ten subjects. Recognition targets using our sensor prototype and their monitoring system comprise five behavior patterns: sleeping, longitudinal sitting, lateral sitting, terminal sitting, and leaving the bed. We compared machine learning algorithms of five types to recognize five behavior patterns. The experimentally obtained results revealed that the proposed sensor system improved recognition accuracy for both datasets. Moreover, we achieved improved recognition accuracy after integration of learning datasets as a general discriminator.</description><subject>Accuracy</subject><subject>Aged</subject><subject>Aging</subject><subject>Algorithms</subject><subject>ambient sensors</subject><subject>Beds</subject><subject>Cameras</subject><subject>Caregivers</subject><subject>Datasets</subject><subject>home agent</subject><subject>Humans</subject><subject>Japan</subject><subject>life monitoring</subject><subject>Load</subject><subject>Load tests</subject><subject>Machine Learning</subject><subject>Monitoring, Physiologic - instrumentation</subject><subject>Nursing</subject><subject>Older people</subject><subject>Pattern recognition</subject><subject>Polyethylene terephthalate</subject><subject>quality of life</subject><subject>random forest</subject><subject>Security Measures</subject><subject>Sensors</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkstuEzEUhkcIREthwQsgS2xgMeDLeOzZINEbRAqionRteTzHiaMZO9gzkfIovG2dpEQtKx8df_50_OsUxVuCPzHW4M-JYsxJRfiz4pRUtColpfj5o_qkeJXSCmPKGJMvixNGCccSN6fF30vYQB_WA_gRBYtmfuOSa3tAt-BTiAlp3yGNfmizdB7KOejonV-U5zpBh36BCQvvRhc8ut2mEQZ0t-vbENGVjv0W3UTonNkDWX_pkgl-dH4KU0Ln0O2Em-zL9TIX-dmNHkeIPr0uXljdJ3jzcJ4Vd9dXvy--l_Of32YXX-el4YyPZWtqCdhSKoWsrGAEbAda1rapJBWAZf6qqARIThvaNbrSpgbcGmObFqQQ7KyYHbxd0Cu1jm7QcauCdmrfCHGhdByd6UE1uCZMmkq2RFREmtaymtuuBdPxlhKTXV8OrvXUDtCZHGrU_RPp0xvvlmoRNkpgyQWvsuDDgyCGPxOkUQ05Meh77SEnpigTvMECC5bR9_-hqzBFn6PaU1QQzGWmPh4oE0NKEexxGILVbnnUcXky--7x9Efy37awe6MywTo</recordid><startdate>20200305</startdate><enddate>20200305</enddate><creator>Madokoro, Hirokazu</creator><creator>Nakasho, Kazuhisa</creator><creator>Shimoi, Nobuhiro</creator><creator>Woo, Hanwool</creator><creator>Sato, Kazuhito</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8586-4304</orcidid><orcidid>https://orcid.org/0000-0001-5485-2928</orcidid><orcidid>https://orcid.org/0000-0003-1110-4342</orcidid></search><sort><creationdate>20200305</creationdate><title>Development of Invisible Sensors and a Machine-Learning-Based Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns</title><author>Madokoro, Hirokazu ; Nakasho, Kazuhisa ; Shimoi, Nobuhiro ; Woo, Hanwool ; Sato, Kazuhito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Aged</topic><topic>Aging</topic><topic>Algorithms</topic><topic>ambient sensors</topic><topic>Beds</topic><topic>Cameras</topic><topic>Caregivers</topic><topic>Datasets</topic><topic>home agent</topic><topic>Humans</topic><topic>Japan</topic><topic>life monitoring</topic><topic>Load</topic><topic>Load tests</topic><topic>Machine Learning</topic><topic>Monitoring, Physiologic - instrumentation</topic><topic>Nursing</topic><topic>Older people</topic><topic>Pattern recognition</topic><topic>Polyethylene terephthalate</topic><topic>quality of life</topic><topic>random forest</topic><topic>Security Measures</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madokoro, Hirokazu</creatorcontrib><creatorcontrib>Nakasho, Kazuhisa</creatorcontrib><creatorcontrib>Shimoi, Nobuhiro</creatorcontrib><creatorcontrib>Woo, Hanwool</creatorcontrib><creatorcontrib>Sato, Kazuhito</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madokoro, Hirokazu</au><au>Nakasho, Kazuhisa</au><au>Shimoi, Nobuhiro</au><au>Woo, Hanwool</au><au>Sato, Kazuhito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Invisible Sensors and a Machine-Learning-Based Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-03-05</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>1415</spage><pages>1415-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This paper presents a novel bed-leaving sensor system for real-time recognition of bed-leaving behavior patterns. The proposed system comprises five pad sensors installed on a bed, a rail sensor inserted in a safety rail, and a behavior pattern recognizer based on machine learning. The linear characteristic between loads and output was obtained from a load test to evaluate sensor output characteristics. Moreover, the output values change linearly concomitantly with speed to attain the sensor with the equivalent load. We obtained benchmark datasets of continuous and discontinuous behavior patterns from ten subjects. Recognition targets using our sensor prototype and their monitoring system comprise five behavior patterns: sleeping, longitudinal sitting, lateral sitting, terminal sitting, and leaving the bed. We compared machine learning algorithms of five types to recognize five behavior patterns. The experimentally obtained results revealed that the proposed sensor system improved recognition accuracy for both datasets. Moreover, we achieved improved recognition accuracy after integration of learning datasets as a general discriminator.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32150809</pmid><doi>10.3390/s20051415</doi><orcidid>https://orcid.org/0000-0002-8586-4304</orcidid><orcidid>https://orcid.org/0000-0001-5485-2928</orcidid><orcidid>https://orcid.org/0000-0003-1110-4342</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-03, Vol.20 (5), p.1415 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_906138c48b17418cbf365fdbecd5b21c |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Accuracy Aged Aging Algorithms ambient sensors Beds Cameras Caregivers Datasets home agent Humans Japan life monitoring Load Load tests Machine Learning Monitoring, Physiologic - instrumentation Nursing Older people Pattern recognition Polyethylene terephthalate quality of life random forest Security Measures Sensors |
title | Development of Invisible Sensors and a Machine-Learning-Based Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Invisible%20Sensors%20and%20a%20Machine-Learning-Based%20Recognition%20System%20Used%20for%20Early%20Prediction%20of%20Discontinuous%20Bed-Leaving%20Behavior%20Patterns&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Madokoro,%20Hirokazu&rft.date=2020-03-05&rft.volume=20&rft.issue=5&rft.spage=1415&rft.pages=1415-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20051415&rft_dat=%3Cproquest_doaj_%3E2375907073%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-bc68e0f228784f731efdea86f94827e08215747e85292d9a4ac6e0bccf9be8773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2375271058&rft_id=info:pmid/32150809&rfr_iscdi=true |