Loading…
Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow
An intrusive spectral method of probabilistic load flow (PLF) is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC) expansions of dependent random variables are utilized to build a spectral stochastic representation...
Saved in:
Published in: | Energies (Basel) 2016-03, Vol.9 (3), p.153-153 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43 |
container_end_page | 153 |
container_issue | 3 |
container_start_page | 153 |
container_title | Energies (Basel) |
container_volume | 9 |
creator | Sun, Yingyun Mao, Rui Li, Zuyi Tian, Wei |
description | An intrusive spectral method of probabilistic load flow (PLF) is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC) expansions of dependent random variables are utilized to build a spectral stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional, cumbersome method, a modified stochastic Galerkin (SG) method is proposed based on the P-Q decoupling properties of load flow in power system. By introducing two pre-calculated constant sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency of the proposed method. |
doi_str_mv | 10.3390/en9030153 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_907751a115ee46f6b119b67c8e008caa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_907751a115ee46f6b119b67c8e008caa</doaj_id><sourcerecordid>1776654537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhiPUSiDgwD-IxKU9hI4_YsdHWBUKWtRKhbM1sSfgbYjBzgr672tYhCouzGU-9OjVOzNVdcDgSAgD32gyIIC1YqvaYcaohoEWn_6rt6v9nFdQQggmhNiprhdxyjNOc32BLvYBp_oS5xSemhPM5Ovfc3S3mOfg6jMcKf0JBaD5Nvp6iKn-lWKPfRjDC7GM6OvTMT7uVZ8HHDPtv-bd6vr0-9XiR7P8eXa-OF42TnI5N4KY6zttJGDrDZV24Nooz3vOGaABRcTNIFEPTsuumPZMI4H3RgD0UuxW5xtdH3Fl71O4w_TXRgz2ZRDTjcVUnI1kDWjdMmSsJZJqUD1jplfadQTQOcSi9WWjdZ_iw5rybO9CdjSOOFFcZ8s6AKk45_AxqrVSrWyFLujhO3QV12kqR3mmGNet1KZQXzeUSzHnRMPbLgzs82vt22vFP4EBkwQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771275479</pqid></control><display><type>article</type><title>Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow</title><source>Publicly Available Content (ProQuest)</source><creator>Sun, Yingyun ; Mao, Rui ; Li, Zuyi ; Tian, Wei</creator><creatorcontrib>Sun, Yingyun ; Mao, Rui ; Li, Zuyi ; Tian, Wei</creatorcontrib><description>An intrusive spectral method of probabilistic load flow (PLF) is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC) expansions of dependent random variables are utilized to build a spectral stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional, cumbersome method, a modified stochastic Galerkin (SG) method is proposed based on the P-Q decoupling properties of load flow in power system. By introducing two pre-calculated constant sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency of the proposed method.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en9030153</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Alternative energy sources ; Computation ; Constants ; Construction ; Electricity distribution ; Galerkin methods ; generalized polynomial chaos ; Jacobians ; Methods ; Nataf transformation ; probabilistic load flow ; Probabilistic methods ; Probability theory ; Random variables ; Renewable resources ; stochastic Galerkin method ; Stochasticity ; uncertainty quantification</subject><ispartof>Energies (Basel), 2016-03, Vol.9 (3), p.153-153</ispartof><rights>Copyright MDPI AG 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43</citedby><cites>FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1771275479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1771275479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,36992,44569,74872</link.rule.ids></links><search><creatorcontrib>Sun, Yingyun</creatorcontrib><creatorcontrib>Mao, Rui</creatorcontrib><creatorcontrib>Li, Zuyi</creatorcontrib><creatorcontrib>Tian, Wei</creatorcontrib><title>Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow</title><title>Energies (Basel)</title><description>An intrusive spectral method of probabilistic load flow (PLF) is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC) expansions of dependent random variables are utilized to build a spectral stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional, cumbersome method, a modified stochastic Galerkin (SG) method is proposed based on the P-Q decoupling properties of load flow in power system. By introducing two pre-calculated constant sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency of the proposed method.</description><subject>Accuracy</subject><subject>Alternative energy sources</subject><subject>Computation</subject><subject>Constants</subject><subject>Construction</subject><subject>Electricity distribution</subject><subject>Galerkin methods</subject><subject>generalized polynomial chaos</subject><subject>Jacobians</subject><subject>Methods</subject><subject>Nataf transformation</subject><subject>probabilistic load flow</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>Renewable resources</subject><subject>stochastic Galerkin method</subject><subject>Stochasticity</subject><subject>uncertainty quantification</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1P3DAQhiPUSiDgwD-IxKU9hI4_YsdHWBUKWtRKhbM1sSfgbYjBzgr672tYhCouzGU-9OjVOzNVdcDgSAgD32gyIIC1YqvaYcaohoEWn_6rt6v9nFdQQggmhNiprhdxyjNOc32BLvYBp_oS5xSemhPM5Ovfc3S3mOfg6jMcKf0JBaD5Nvp6iKn-lWKPfRjDC7GM6OvTMT7uVZ8HHDPtv-bd6vr0-9XiR7P8eXa-OF42TnI5N4KY6zttJGDrDZV24Nooz3vOGaABRcTNIFEPTsuumPZMI4H3RgD0UuxW5xtdH3Fl71O4w_TXRgz2ZRDTjcVUnI1kDWjdMmSsJZJqUD1jplfadQTQOcSi9WWjdZ_iw5rybO9CdjSOOFFcZ8s6AKk45_AxqrVSrWyFLujhO3QV12kqR3mmGNet1KZQXzeUSzHnRMPbLgzs82vt22vFP4EBkwQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Sun, Yingyun</creator><creator>Mao, Rui</creator><creator>Li, Zuyi</creator><creator>Tian, Wei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20160301</creationdate><title>Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow</title><author>Sun, Yingyun ; Mao, Rui ; Li, Zuyi ; Tian, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Alternative energy sources</topic><topic>Computation</topic><topic>Constants</topic><topic>Construction</topic><topic>Electricity distribution</topic><topic>Galerkin methods</topic><topic>generalized polynomial chaos</topic><topic>Jacobians</topic><topic>Methods</topic><topic>Nataf transformation</topic><topic>probabilistic load flow</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>Renewable resources</topic><topic>stochastic Galerkin method</topic><topic>Stochasticity</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yingyun</creatorcontrib><creatorcontrib>Mao, Rui</creatorcontrib><creatorcontrib>Li, Zuyi</creatorcontrib><creatorcontrib>Tian, Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yingyun</au><au>Mao, Rui</au><au>Li, Zuyi</au><au>Tian, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow</atitle><jtitle>Energies (Basel)</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>9</volume><issue>3</issue><spage>153</spage><epage>153</epage><pages>153-153</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>An intrusive spectral method of probabilistic load flow (PLF) is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC) expansions of dependent random variables are utilized to build a spectral stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional, cumbersome method, a modified stochastic Galerkin (SG) method is proposed based on the P-Q decoupling properties of load flow in power system. By introducing two pre-calculated constant sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency of the proposed method.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en9030153</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2016-03, Vol.9 (3), p.153-153 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_907751a115ee46f6b119b67c8e008caa |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Alternative energy sources Computation Constants Construction Electricity distribution Galerkin methods generalized polynomial chaos Jacobians Methods Nataf transformation probabilistic load flow Probabilistic methods Probability theory Random variables Renewable resources stochastic Galerkin method Stochasticity uncertainty quantification |
title | Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constant%20Jacobian%20Matrix-Based%20Stochastic%20Galerkin%20Method%20for%20Probabilistic%20Load%20Flow&rft.jtitle=Energies%20(Basel)&rft.au=Sun,%20Yingyun&rft.date=2016-03-01&rft.volume=9&rft.issue=3&rft.spage=153&rft.epage=153&rft.pages=153-153&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en9030153&rft_dat=%3Cproquest_doaj_%3E1776654537%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1771275479&rft_id=info:pmid/&rfr_iscdi=true |