Loading…

Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow

An intrusive spectral method of probabilistic load flow (PLF) is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC) expansions of dependent random variables are utilized to build a spectral stochastic representation...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2016-03, Vol.9 (3), p.153-153
Main Authors: Sun, Yingyun, Mao, Rui, Li, Zuyi, Tian, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43
cites cdi_FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43
container_end_page 153
container_issue 3
container_start_page 153
container_title Energies (Basel)
container_volume 9
creator Sun, Yingyun
Mao, Rui
Li, Zuyi
Tian, Wei
description An intrusive spectral method of probabilistic load flow (PLF) is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC) expansions of dependent random variables are utilized to build a spectral stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional, cumbersome method, a modified stochastic Galerkin (SG) method is proposed based on the P-Q decoupling properties of load flow in power system. By introducing two pre-calculated constant sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency of the proposed method.
doi_str_mv 10.3390/en9030153
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_907751a115ee46f6b119b67c8e008caa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_907751a115ee46f6b119b67c8e008caa</doaj_id><sourcerecordid>1776654537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhiPUSiDgwD-IxKU9hI4_YsdHWBUKWtRKhbM1sSfgbYjBzgr672tYhCouzGU-9OjVOzNVdcDgSAgD32gyIIC1YqvaYcaohoEWn_6rt6v9nFdQQggmhNiprhdxyjNOc32BLvYBp_oS5xSemhPM5Ovfc3S3mOfg6jMcKf0JBaD5Nvp6iKn-lWKPfRjDC7GM6OvTMT7uVZ8HHDPtv-bd6vr0-9XiR7P8eXa-OF42TnI5N4KY6zttJGDrDZV24Nooz3vOGaABRcTNIFEPTsuumPZMI4H3RgD0UuxW5xtdH3Fl71O4w_TXRgz2ZRDTjcVUnI1kDWjdMmSsJZJqUD1jplfadQTQOcSi9WWjdZ_iw5rybO9CdjSOOFFcZ8s6AKk45_AxqrVSrWyFLujhO3QV12kqR3mmGNet1KZQXzeUSzHnRMPbLgzs82vt22vFP4EBkwQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771275479</pqid></control><display><type>article</type><title>Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow</title><source>Publicly Available Content (ProQuest)</source><creator>Sun, Yingyun ; Mao, Rui ; Li, Zuyi ; Tian, Wei</creator><creatorcontrib>Sun, Yingyun ; Mao, Rui ; Li, Zuyi ; Tian, Wei</creatorcontrib><description>An intrusive spectral method of probabilistic load flow (PLF) is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC) expansions of dependent random variables are utilized to build a spectral stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional, cumbersome method, a modified stochastic Galerkin (SG) method is proposed based on the P-Q decoupling properties of load flow in power system. By introducing two pre-calculated constant sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency of the proposed method.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en9030153</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Alternative energy sources ; Computation ; Constants ; Construction ; Electricity distribution ; Galerkin methods ; generalized polynomial chaos ; Jacobians ; Methods ; Nataf transformation ; probabilistic load flow ; Probabilistic methods ; Probability theory ; Random variables ; Renewable resources ; stochastic Galerkin method ; Stochasticity ; uncertainty quantification</subject><ispartof>Energies (Basel), 2016-03, Vol.9 (3), p.153-153</ispartof><rights>Copyright MDPI AG 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43</citedby><cites>FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1771275479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1771275479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,36992,44569,74872</link.rule.ids></links><search><creatorcontrib>Sun, Yingyun</creatorcontrib><creatorcontrib>Mao, Rui</creatorcontrib><creatorcontrib>Li, Zuyi</creatorcontrib><creatorcontrib>Tian, Wei</creatorcontrib><title>Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow</title><title>Energies (Basel)</title><description>An intrusive spectral method of probabilistic load flow (PLF) is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC) expansions of dependent random variables are utilized to build a spectral stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional, cumbersome method, a modified stochastic Galerkin (SG) method is proposed based on the P-Q decoupling properties of load flow in power system. By introducing two pre-calculated constant sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency of the proposed method.</description><subject>Accuracy</subject><subject>Alternative energy sources</subject><subject>Computation</subject><subject>Constants</subject><subject>Construction</subject><subject>Electricity distribution</subject><subject>Galerkin methods</subject><subject>generalized polynomial chaos</subject><subject>Jacobians</subject><subject>Methods</subject><subject>Nataf transformation</subject><subject>probabilistic load flow</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>Renewable resources</subject><subject>stochastic Galerkin method</subject><subject>Stochasticity</subject><subject>uncertainty quantification</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1P3DAQhiPUSiDgwD-IxKU9hI4_YsdHWBUKWtRKhbM1sSfgbYjBzgr672tYhCouzGU-9OjVOzNVdcDgSAgD32gyIIC1YqvaYcaohoEWn_6rt6v9nFdQQggmhNiprhdxyjNOc32BLvYBp_oS5xSemhPM5Ovfc3S3mOfg6jMcKf0JBaD5Nvp6iKn-lWKPfRjDC7GM6OvTMT7uVZ8HHDPtv-bd6vr0-9XiR7P8eXa-OF42TnI5N4KY6zttJGDrDZV24Nooz3vOGaABRcTNIFEPTsuumPZMI4H3RgD0UuxW5xtdH3Fl71O4w_TXRgz2ZRDTjcVUnI1kDWjdMmSsJZJqUD1jplfadQTQOcSi9WWjdZ_iw5rybO9CdjSOOFFcZ8s6AKk45_AxqrVSrWyFLujhO3QV12kqR3mmGNet1KZQXzeUSzHnRMPbLgzs82vt22vFP4EBkwQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Sun, Yingyun</creator><creator>Mao, Rui</creator><creator>Li, Zuyi</creator><creator>Tian, Wei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20160301</creationdate><title>Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow</title><author>Sun, Yingyun ; Mao, Rui ; Li, Zuyi ; Tian, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Alternative energy sources</topic><topic>Computation</topic><topic>Constants</topic><topic>Construction</topic><topic>Electricity distribution</topic><topic>Galerkin methods</topic><topic>generalized polynomial chaos</topic><topic>Jacobians</topic><topic>Methods</topic><topic>Nataf transformation</topic><topic>probabilistic load flow</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>Renewable resources</topic><topic>stochastic Galerkin method</topic><topic>Stochasticity</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yingyun</creatorcontrib><creatorcontrib>Mao, Rui</creatorcontrib><creatorcontrib>Li, Zuyi</creatorcontrib><creatorcontrib>Tian, Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yingyun</au><au>Mao, Rui</au><au>Li, Zuyi</au><au>Tian, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow</atitle><jtitle>Energies (Basel)</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>9</volume><issue>3</issue><spage>153</spage><epage>153</epage><pages>153-153</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>An intrusive spectral method of probabilistic load flow (PLF) is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC) expansions of dependent random variables are utilized to build a spectral stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional, cumbersome method, a modified stochastic Galerkin (SG) method is proposed based on the P-Q decoupling properties of load flow in power system. By introducing two pre-calculated constant sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency of the proposed method.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en9030153</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2016-03, Vol.9 (3), p.153-153
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_907751a115ee46f6b119b67c8e008caa
source Publicly Available Content (ProQuest)
subjects Accuracy
Alternative energy sources
Computation
Constants
Construction
Electricity distribution
Galerkin methods
generalized polynomial chaos
Jacobians
Methods
Nataf transformation
probabilistic load flow
Probabilistic methods
Probability theory
Random variables
Renewable resources
stochastic Galerkin method
Stochasticity
uncertainty quantification
title Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constant%20Jacobian%20Matrix-Based%20Stochastic%20Galerkin%20Method%20for%20Probabilistic%20Load%20Flow&rft.jtitle=Energies%20(Basel)&rft.au=Sun,%20Yingyun&rft.date=2016-03-01&rft.volume=9&rft.issue=3&rft.spage=153&rft.epage=153&rft.pages=153-153&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en9030153&rft_dat=%3Cproquest_doaj_%3E1776654537%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-3e1cb87940a5d9e3e1f2796d2b2210a906ee29f4a7fc748033d17ae0dd9300b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1771275479&rft_id=info:pmid/&rfr_iscdi=true