Loading…
An Optimization-Based Motion Planner for Car-like Logistics Robots on Narrow Roads
Thanks to their strong maneuverability and high load capacity, car-like robots with non-holonomic constraints are often used in logistics to improve efficiency. However, it is difficult to plan a safe and smooth optimal path in real time on the restricted narrow roads of the logistics park. To solve...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-11, Vol.22 (22), p.8948 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thanks to their strong maneuverability and high load capacity, car-like robots with non-holonomic constraints are often used in logistics to improve efficiency. However, it is difficult to plan a safe and smooth optimal path in real time on the restricted narrow roads of the logistics park. To solve this problem, an optimization-based motion planning method inspired by the Timed-Elastic-Band algorithm is proposed, called Narrow-Roads-Timed-Elastic-Band (NRTEB). Three optimization modules are added to the inner and outer workflow of the Timed-Elastic-Band framework. The simulation results show that the proposed method achieves safe reversing planning on narrow roads while the jerk of the trajectory is reduced by 72.11% compared to the original method. Real-world experiments reveal that the proposed method safely and smoothly avoids dynamic obstacles in real time when navigating forward and backward. The motion planner provides a safer and smoother trajectory for car-like robots on narrow roads in real time, which greatly enhances the safety, robustness and reliability of the Timed-Elastic-Band planner in logistics parks. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22228948 |