Loading…
Relationship between mobility and strain in CVD graphene on h-BN
This study examines the relationship between the electrical properties and Raman spectra of field effect transistors (FETs) produced using chemical vapor deposited (CVD) graphene transferred onto hexagonal boron nitride (h-BN) structures. Carrier mobility values were calculated based on the electric...
Saved in:
Published in: | AIP advances 2020-08, Vol.10 (8), p.085309-085309-5 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study examines the relationship between the electrical properties and Raman spectra of field effect transistors (FETs) produced using chemical vapor deposited (CVD) graphene transferred onto hexagonal boron nitride (h-BN) structures. Carrier mobility values were calculated based on the electrical properties of the fabricated FETs, where the highest carrier mobility was 39 989 cm2/Vs. Carrier mobility increased with a decrease in the full width at half maximum (FWHM) of the 2D-band peak of CVD graphene. A linear relationship with a slope of 2.18 between the G-band and 2D-band peak positions was detected, indicating that a uniaxial strain existed in the CVD graphene FETs. Based on the peak shifts in the 2D-band, it was determined that both compressive and tensile strains were responsible for limiting carrier mobility. Ultimately, the analysis of peak positions and FWHMs of 2D-bands enabled us to evaluate the uniformity of electrical properties of CVD graphene without fabricating specialized measurement devices. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/5.0019621 |