Loading…

Phase transformation and strengthening mechanisms of nanostructured high-entropy alloys

High-entropy alloys (HEAs) have become a research focus because of their easy access to nanostructures and the characteristics of high strength, hardness, wear resistance, and oxidation resistance, and have been applied in aerospace lightweight materials, ultrahigh temperature materials, high-perfor...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology reviews (Berlin) 2021-09, Vol.10 (1), p.1116-1139
Main Authors: Chen, Jinmei, Jiang, Xiaosong, Sun, Hongliang, Shao, Zhenyi, Fang, Yongjian, Shu, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-entropy alloys (HEAs) have become a research focus because of their easy access to nanostructures and the characteristics of high strength, hardness, wear resistance, and oxidation resistance, and have been applied in aerospace lightweight materials, ultrahigh temperature materials, high-performance materials, and biomimetic materials. At present, the study of HEAs mainly focuses on the microstructure and mechanical properties. HEAs of Mo, Ti, V, Nb, Hf, Ta, Cr, and W series have high strength, while HEAs of Fe, Co, Ni, Cr, Cu, and Mn series have good toughness. However, the emergence of medium-entropy alloys, metastable HEAs, dual-phase HEAs, and multiphase HEAs increased the complexity of the HEA system, and the phase transition mechanism and strengthening and toughening mechanisms were not fully established. In this article, the preparation, phase formation, phase transformation as well as strengthening and toughening mechanisms of the HEAs are reviewed. The inductive effects of alloying elements, temperature, magnetism, and pressure on the phase transformation were systematically analyzed. The strengthening mechanisms of HEAs are discussed, which provides a reference for the design and performance optimization of HEAs.
ISSN:2191-9097
2191-9089
2191-9097
DOI:10.1515/ntrev-2021-0071