Loading…
Semi-supervised PolSAR Image Change Detection using Similarity Matching
The lack of precisely labeled data limits the development of supervised polarimetric synthetic aperture radar (PolSAR) image change detection. Therefore, semi-supervised deep learning methods have recently demonstrated their significant capability for PolSAR image change detection. Similarity Matchi...
Saved in:
Published in: | International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2024-05, Vol.XLVIII-1-2024, p.655-661 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 661 |
container_issue | |
container_start_page | 655 |
container_title | International archives of the photogrammetry, remote sensing and spatial information sciences. |
container_volume | XLVIII-1-2024 |
creator | Wang, Lei Peng, Lingmu Hong, Hanyu Zhao, Shuwei Lv, Qiwen Gui, Rong |
description | The lack of precisely labeled data limits the development of supervised polarimetric synthetic aperture radar (PolSAR) image change detection. Therefore, semi-supervised deep learning methods have recently demonstrated their significant capability for PolSAR image change detection. Similarity Matching (SimMatch) improves the performance of semi-supervised learning tasks across different benchmark datasets and different settings. Introducing SimMatch into the field of PolSAR image change detection can improve the performance of semi-supervised PolSAR image change detection under limited labeled data conditions. Usually, semi-supervision solves the problem of insufficient labeled data by generating pseudo-labels. However, when the pseudo-label method is simply applied, the model will fit on the confident but wrong pseudo-labels, resulting in poor performance. SimMatch offers a solution by requiring the strongly augmented view to share the same semantic similarity (i.e. label prediction) and instance characteristics (i.e. similarity between instances) with a weak augmented view for more intrinsic feature matching. Besides, by using a labeled memory buffer, the two similarities can be isomorphically transformed with each other by introducing the aggregating and unfolding techniques. Therefore, the semantic and instance pseudo-labels can be mutually propagated, and then, the detection performance of the PolSAR image change detection is improved. Experimental results on real PolSAR datasets demonstrated that SimMatch is an effective semi-supervised PolSAR change detection method and its performance surpasses some well-known change detection methods. Compared to the fully-supervised algorithm CWNN, the semi-supervised SimMatch algorithm can improve accuracy by up to 14.4%. |
doi_str_mv | 10.5194/isprs-archives-XLVIII-1-2024-655-2024 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_90913693a51041318a43a0c1a98a2be5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_90913693a51041318a43a0c1a98a2be5</doaj_id><sourcerecordid>3053263713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2894-961f3923d14dc0cfeb3ad5a3869bfacd1a2be8fe00e35a46fbccbd3fc32e3a453</originalsourceid><addsrcrecordid>eNpNkd1LwzAUxYsoOOb-h4LP0aQ3qe3jmHMWJopT8S3cpmmX0Y-ZdIP99_ZDxad7uBzOOfDzPMLojWAxvzVubx1Bq7bmqB35XH8kSUIYCWjASSjEIM68SdCZSUyBn__Tl97MuR2llPEwFFRMvNVGV4a4w17bo3E681-acjN_9ZMKC-0vtlh35163WrWmqf2DM3Xhb0xlSrSmPflP2HZL6uLKu8ixdHr2c6fe-8PybfFI1s-rZDFfExVE_YiQ5RAHkDGeKapynQJmAiEK4zRHlTEMUh3lmlINAnmYp0qlGeQKAg3IBUy9ZMzNGtzJvTUV2pNs0Mjh0dhCom2NKrWMacwgjAEFo5wBi5ADUsUwjvqWPut6zNrb5uugXSt3zcHW3XwJVEAQwh2DzrUcXco2zlmd_7UyKnskckAif5HIEYlksichOySDgG_OK4Xt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053263713</pqid></control><display><type>article</type><title>Semi-supervised PolSAR Image Change Detection using Similarity Matching</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Wang, Lei ; Peng, Lingmu ; Hong, Hanyu ; Zhao, Shuwei ; Lv, Qiwen ; Gui, Rong</creator><creatorcontrib>Wang, Lei ; Peng, Lingmu ; Hong, Hanyu ; Zhao, Shuwei ; Lv, Qiwen ; Gui, Rong</creatorcontrib><description>The lack of precisely labeled data limits the development of supervised polarimetric synthetic aperture radar (PolSAR) image change detection. Therefore, semi-supervised deep learning methods have recently demonstrated their significant capability for PolSAR image change detection. Similarity Matching (SimMatch) improves the performance of semi-supervised learning tasks across different benchmark datasets and different settings. Introducing SimMatch into the field of PolSAR image change detection can improve the performance of semi-supervised PolSAR image change detection under limited labeled data conditions. Usually, semi-supervision solves the problem of insufficient labeled data by generating pseudo-labels. However, when the pseudo-label method is simply applied, the model will fit on the confident but wrong pseudo-labels, resulting in poor performance. SimMatch offers a solution by requiring the strongly augmented view to share the same semantic similarity (i.e. label prediction) and instance characteristics (i.e. similarity between instances) with a weak augmented view for more intrinsic feature matching. Besides, by using a labeled memory buffer, the two similarities can be isomorphically transformed with each other by introducing the aggregating and unfolding techniques. Therefore, the semantic and instance pseudo-labels can be mutually propagated, and then, the detection performance of the PolSAR image change detection is improved. Experimental results on real PolSAR datasets demonstrated that SimMatch is an effective semi-supervised PolSAR change detection method and its performance surpasses some well-known change detection methods. Compared to the fully-supervised algorithm CWNN, the semi-supervised SimMatch algorithm can improve accuracy by up to 14.4%.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprs-archives-XLVIII-1-2024-655-2024</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Algorithms ; Change detection ; Cognitive tasks ; Datasets ; Deep learning ; Labels ; Matching ; Performance enhancement ; Radar detection ; Radar imaging ; SAR (radar) ; Semantics ; Semi-supervised learning ; Similarity ; Synthetic aperture radar</subject><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2024-05, Vol.XLVIII-1-2024, p.655-661</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3053263713?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Peng, Lingmu</creatorcontrib><creatorcontrib>Hong, Hanyu</creatorcontrib><creatorcontrib>Zhao, Shuwei</creatorcontrib><creatorcontrib>Lv, Qiwen</creatorcontrib><creatorcontrib>Gui, Rong</creatorcontrib><title>Semi-supervised PolSAR Image Change Detection using Similarity Matching</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>The lack of precisely labeled data limits the development of supervised polarimetric synthetic aperture radar (PolSAR) image change detection. Therefore, semi-supervised deep learning methods have recently demonstrated their significant capability for PolSAR image change detection. Similarity Matching (SimMatch) improves the performance of semi-supervised learning tasks across different benchmark datasets and different settings. Introducing SimMatch into the field of PolSAR image change detection can improve the performance of semi-supervised PolSAR image change detection under limited labeled data conditions. Usually, semi-supervision solves the problem of insufficient labeled data by generating pseudo-labels. However, when the pseudo-label method is simply applied, the model will fit on the confident but wrong pseudo-labels, resulting in poor performance. SimMatch offers a solution by requiring the strongly augmented view to share the same semantic similarity (i.e. label prediction) and instance characteristics (i.e. similarity between instances) with a weak augmented view for more intrinsic feature matching. Besides, by using a labeled memory buffer, the two similarities can be isomorphically transformed with each other by introducing the aggregating and unfolding techniques. Therefore, the semantic and instance pseudo-labels can be mutually propagated, and then, the detection performance of the PolSAR image change detection is improved. Experimental results on real PolSAR datasets demonstrated that SimMatch is an effective semi-supervised PolSAR change detection method and its performance surpasses some well-known change detection methods. Compared to the fully-supervised algorithm CWNN, the semi-supervised SimMatch algorithm can improve accuracy by up to 14.4%.</description><subject>Algorithms</subject><subject>Change detection</subject><subject>Cognitive tasks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Labels</subject><subject>Matching</subject><subject>Performance enhancement</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>SAR (radar)</subject><subject>Semantics</subject><subject>Semi-supervised learning</subject><subject>Similarity</subject><subject>Synthetic aperture radar</subject><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1LwzAUxYsoOOb-h4LP0aQ3qe3jmHMWJopT8S3cpmmX0Y-ZdIP99_ZDxad7uBzOOfDzPMLojWAxvzVubx1Bq7bmqB35XH8kSUIYCWjASSjEIM68SdCZSUyBn__Tl97MuR2llPEwFFRMvNVGV4a4w17bo3E681-acjN_9ZMKC-0vtlh35163WrWmqf2DM3Xhb0xlSrSmPflP2HZL6uLKu8ixdHr2c6fe-8PybfFI1s-rZDFfExVE_YiQ5RAHkDGeKapynQJmAiEK4zRHlTEMUh3lmlINAnmYp0qlGeQKAg3IBUy9ZMzNGtzJvTUV2pNs0Mjh0dhCom2NKrWMacwgjAEFo5wBi5ADUsUwjvqWPut6zNrb5uugXSt3zcHW3XwJVEAQwh2DzrUcXco2zlmd_7UyKnskckAif5HIEYlksichOySDgG_OK4Xt</recordid><startdate>20240511</startdate><enddate>20240511</enddate><creator>Wang, Lei</creator><creator>Peng, Lingmu</creator><creator>Hong, Hanyu</creator><creator>Zhao, Shuwei</creator><creator>Lv, Qiwen</creator><creator>Gui, Rong</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20240511</creationdate><title>Semi-supervised PolSAR Image Change Detection using Similarity Matching</title><author>Wang, Lei ; Peng, Lingmu ; Hong, Hanyu ; Zhao, Shuwei ; Lv, Qiwen ; Gui, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2894-961f3923d14dc0cfeb3ad5a3869bfacd1a2be8fe00e35a46fbccbd3fc32e3a453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Change detection</topic><topic>Cognitive tasks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Labels</topic><topic>Matching</topic><topic>Performance enhancement</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>SAR (radar)</topic><topic>Semantics</topic><topic>Semi-supervised learning</topic><topic>Similarity</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Peng, Lingmu</creatorcontrib><creatorcontrib>Hong, Hanyu</creatorcontrib><creatorcontrib>Zhao, Shuwei</creatorcontrib><creatorcontrib>Lv, Qiwen</creatorcontrib><creatorcontrib>Gui, Rong</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lei</au><au>Peng, Lingmu</au><au>Hong, Hanyu</au><au>Zhao, Shuwei</au><au>Lv, Qiwen</au><au>Gui, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-supervised PolSAR Image Change Detection using Similarity Matching</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2024-05-11</date><risdate>2024</risdate><volume>XLVIII-1-2024</volume><spage>655</spage><epage>661</epage><pages>655-661</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>The lack of precisely labeled data limits the development of supervised polarimetric synthetic aperture radar (PolSAR) image change detection. Therefore, semi-supervised deep learning methods have recently demonstrated their significant capability for PolSAR image change detection. Similarity Matching (SimMatch) improves the performance of semi-supervised learning tasks across different benchmark datasets and different settings. Introducing SimMatch into the field of PolSAR image change detection can improve the performance of semi-supervised PolSAR image change detection under limited labeled data conditions. Usually, semi-supervision solves the problem of insufficient labeled data by generating pseudo-labels. However, when the pseudo-label method is simply applied, the model will fit on the confident but wrong pseudo-labels, resulting in poor performance. SimMatch offers a solution by requiring the strongly augmented view to share the same semantic similarity (i.e. label prediction) and instance characteristics (i.e. similarity between instances) with a weak augmented view for more intrinsic feature matching. Besides, by using a labeled memory buffer, the two similarities can be isomorphically transformed with each other by introducing the aggregating and unfolding techniques. Therefore, the semantic and instance pseudo-labels can be mutually propagated, and then, the detection performance of the PolSAR image change detection is improved. Experimental results on real PolSAR datasets demonstrated that SimMatch is an effective semi-supervised PolSAR change detection method and its performance surpasses some well-known change detection methods. Compared to the fully-supervised algorithm CWNN, the semi-supervised SimMatch algorithm can improve accuracy by up to 14.4%.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-archives-XLVIII-1-2024-655-2024</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-9034 |
ispartof | International archives of the photogrammetry, remote sensing and spatial information sciences., 2024-05, Vol.XLVIII-1-2024, p.655-661 |
issn | 2194-9034 1682-1750 2194-9034 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_90913693a51041318a43a0c1a98a2be5 |
source | Publicly Available Content Database; EZB Electronic Journals Library |
subjects | Algorithms Change detection Cognitive tasks Datasets Deep learning Labels Matching Performance enhancement Radar detection Radar imaging SAR (radar) Semantics Semi-supervised learning Similarity Synthetic aperture radar |
title | Semi-supervised PolSAR Image Change Detection using Similarity Matching |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-supervised%20PolSAR%20Image%20Change%20Detection%20using%20Similarity%20Matching&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Wang,%20Lei&rft.date=2024-05-11&rft.volume=XLVIII-1-2024&rft.spage=655&rft.epage=661&rft.pages=655-661&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprs-archives-XLVIII-1-2024-655-2024&rft_dat=%3Cproquest_doaj_%3E3053263713%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2894-961f3923d14dc0cfeb3ad5a3869bfacd1a2be8fe00e35a46fbccbd3fc32e3a453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3053263713&rft_id=info:pmid/&rfr_iscdi=true |