Loading…

Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease

In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical diagnosis based on fixed impairment levels, as...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage clinical 2018-01, Vol.19, p.443-453
Main Authors: Castro, Eduardo, Polosecki, Pablo, Rish, Irina, Pustina, Dorian, Warner, John H., Wood, Andrew, Sampaio, Cristina, Cecchi, Guillermo A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473
cites cdi_FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473
container_end_page 453
container_issue
container_start_page 443
container_title NeuroImage clinical
container_volume 19
creator Castro, Eduardo
Polosecki, Pablo
Rish, Irina
Pustina, Dorian
Warner, John H.
Wood, Andrew
Sampaio, Cristina
Cecchi, Guillermo A.
description In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical diagnosis based on fixed impairment levels, as opposed to predicting impairment in time windows comparable to the duration of a clinical trial. Here we evaluate an approach to both detect atrophy patterns associated with early degeneration and provide a prognosis of motor impairment within 3 years, using data from the TRACK-HD study on 80 premanifest HD (pre-HD) individuals and 85 age- and sex-matched healthy controls. We integrate anatomical MRI information from gray matter concentrations (estimated via voxel-based morphometry) together with baseline data from demographic, genetic and motor domains to distinguish individuals at high risk of developing pronounced future motor impairment from those at low risk. We evaluate the ability of models to distinguish between these two groups solely using baseline imaging data, as well as in combination with longitudinal imaging or non-imaging data. Our models show improved performance for motor prognosis through the incorporation of imaging features to non-imaging data, reaching 88% cross-validated accuracy when using baseline non-longitudinal information, and detect informative correlates in the caudate nucleus and the thalamus both for motor prognosis and early atrophy detection. These results show the plausibility of using baseline imaging and basic demographic/genetic measures for early detection of individuals at high risk of severe future motor impairment in relatively short timeframes. •Detection of pre-HD subjects at high risk of impairment is key for clinical trials.•Prognostic models of motor impairment can aid the detection of this population.•Genetics only partially explains disease progression (need for other correlates).•We achieve improved prognosis with baseline imaging, demographics and motor data.
doi_str_mv 10.1016/j.nicl.2018.05.008
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_909389c205d04a9b9f58108aa89c616f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213158218301542</els_id><doaj_id>oai_doaj_org_article_909389c205d04a9b9f58108aa89c616f</doaj_id><sourcerecordid>2067134219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhU1paEKSP9BF8a7djKOXZQlKoQ3NAwLdtGtxR5amGmxpKsmB_Pve6aQh2UQbiatzP12d0zTvKekoofJi28Vgp44RqjrSd4SoN80JY5SvaK_Y22fn4-a8lC3BpQgZpHzXHDOtlaA9P2nGb1DcFKJr52WqYU4jTG2IPuUZakix3WU3BltL65e6ZJSlmnIb5h2EPLtYUbzXzBCDd6W2N0usIW5qih9LO4bikH_WHHmYijt_3E-bX1fff17erO5-XN9efr1b2Z7RuqJSDQMfBKdyFDgfcMq941w4D0wzb9na90p7sF7CSKWQordq4IJbqtZi4KfN7YE7JtiaXQ4z5AeTIJh_hZQ3BnJF25zRRHOlLSP9SATotUYyJQoAi5JKj6wvB9ZuWc9utPjVDNML6MubGH6bTbo3kjDdS4KAT4-AnP4saI2ZQ7FumiC6tBTDiBwoF4xqlLKD1OZUSnb-6RlKzD5tszX7tM0-bUN6g1Fi04fnAz61_M8WBZ8PAoeW3weXTbHBRYt5ZmcrehJe4_8Fhb287g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067134219</pqid></control><display><type>article</type><title>Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease</title><source>ScienceDirect Freedom Collection</source><source>PubMed Central (PMC)</source><creator>Castro, Eduardo ; Polosecki, Pablo ; Rish, Irina ; Pustina, Dorian ; Warner, John H. ; Wood, Andrew ; Sampaio, Cristina ; Cecchi, Guillermo A.</creator><creatorcontrib>Castro, Eduardo ; Polosecki, Pablo ; Rish, Irina ; Pustina, Dorian ; Warner, John H. ; Wood, Andrew ; Sampaio, Cristina ; Cecchi, Guillermo A.</creatorcontrib><description>In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical diagnosis based on fixed impairment levels, as opposed to predicting impairment in time windows comparable to the duration of a clinical trial. Here we evaluate an approach to both detect atrophy patterns associated with early degeneration and provide a prognosis of motor impairment within 3 years, using data from the TRACK-HD study on 80 premanifest HD (pre-HD) individuals and 85 age- and sex-matched healthy controls. We integrate anatomical MRI information from gray matter concentrations (estimated via voxel-based morphometry) together with baseline data from demographic, genetic and motor domains to distinguish individuals at high risk of developing pronounced future motor impairment from those at low risk. We evaluate the ability of models to distinguish between these two groups solely using baseline imaging data, as well as in combination with longitudinal imaging or non-imaging data. Our models show improved performance for motor prognosis through the incorporation of imaging features to non-imaging data, reaching 88% cross-validated accuracy when using baseline non-longitudinal information, and detect informative correlates in the caudate nucleus and the thalamus both for motor prognosis and early atrophy detection. These results show the plausibility of using baseline imaging and basic demographic/genetic measures for early detection of individuals at high risk of severe future motor impairment in relatively short timeframes. •Detection of pre-HD subjects at high risk of impairment is key for clinical trials.•Prognostic models of motor impairment can aid the detection of this population.•Genetics only partially explains disease progression (need for other correlates).•We achieve improved prognosis with baseline imaging, demographics and motor data.</description><identifier>ISSN: 2213-1582</identifier><identifier>EISSN: 2213-1582</identifier><identifier>DOI: 10.1016/j.nicl.2018.05.008</identifier><identifier>PMID: 29984153</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Adult ; Aged ; Atrophy - diagnosis ; Brain - pathology ; Brain Mapping - methods ; Classification ; Disease Progression ; Early Diagnosis ; Female ; Future motor impairment prediction ; Humans ; Huntington Disease - diagnosis ; Huntington Disease - genetics ; Huntington Disease - pathology ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; Multimodal Imaging - methods ; Neuropsychological Tests ; Premanifest Huntington's disease ; Regular ; Structural MRI ; TRACK-HD</subject><ispartof>NeuroImage clinical, 2018-01, Vol.19, p.443-453</ispartof><rights>2018 The Authors</rights><rights>2018 The Authors 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473</citedby><cites>FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473</cites><orcidid>0000-0002-7788-9069 ; 0000-0002-0820-4601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029560/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2213158218301542$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3547,27922,27923,45778,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29984153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro, Eduardo</creatorcontrib><creatorcontrib>Polosecki, Pablo</creatorcontrib><creatorcontrib>Rish, Irina</creatorcontrib><creatorcontrib>Pustina, Dorian</creatorcontrib><creatorcontrib>Warner, John H.</creatorcontrib><creatorcontrib>Wood, Andrew</creatorcontrib><creatorcontrib>Sampaio, Cristina</creatorcontrib><creatorcontrib>Cecchi, Guillermo A.</creatorcontrib><title>Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease</title><title>NeuroImage clinical</title><addtitle>Neuroimage Clin</addtitle><description>In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical diagnosis based on fixed impairment levels, as opposed to predicting impairment in time windows comparable to the duration of a clinical trial. Here we evaluate an approach to both detect atrophy patterns associated with early degeneration and provide a prognosis of motor impairment within 3 years, using data from the TRACK-HD study on 80 premanifest HD (pre-HD) individuals and 85 age- and sex-matched healthy controls. We integrate anatomical MRI information from gray matter concentrations (estimated via voxel-based morphometry) together with baseline data from demographic, genetic and motor domains to distinguish individuals at high risk of developing pronounced future motor impairment from those at low risk. We evaluate the ability of models to distinguish between these two groups solely using baseline imaging data, as well as in combination with longitudinal imaging or non-imaging data. Our models show improved performance for motor prognosis through the incorporation of imaging features to non-imaging data, reaching 88% cross-validated accuracy when using baseline non-longitudinal information, and detect informative correlates in the caudate nucleus and the thalamus both for motor prognosis and early atrophy detection. These results show the plausibility of using baseline imaging and basic demographic/genetic measures for early detection of individuals at high risk of severe future motor impairment in relatively short timeframes. •Detection of pre-HD subjects at high risk of impairment is key for clinical trials.•Prognostic models of motor impairment can aid the detection of this population.•Genetics only partially explains disease progression (need for other correlates).•We achieve improved prognosis with baseline imaging, demographics and motor data.</description><subject>Adult</subject><subject>Aged</subject><subject>Atrophy - diagnosis</subject><subject>Brain - pathology</subject><subject>Brain Mapping - methods</subject><subject>Classification</subject><subject>Disease Progression</subject><subject>Early Diagnosis</subject><subject>Female</subject><subject>Future motor impairment prediction</subject><subject>Humans</subject><subject>Huntington Disease - diagnosis</subject><subject>Huntington Disease - genetics</subject><subject>Huntington Disease - pathology</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multimodal Imaging - methods</subject><subject>Neuropsychological Tests</subject><subject>Premanifest Huntington's disease</subject><subject>Regular</subject><subject>Structural MRI</subject><subject>TRACK-HD</subject><issn>2213-1582</issn><issn>2213-1582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtr3DAUhU1paEKSP9BF8a7djKOXZQlKoQ3NAwLdtGtxR5amGmxpKsmB_Pve6aQh2UQbiatzP12d0zTvKekoofJi28Vgp44RqjrSd4SoN80JY5SvaK_Y22fn4-a8lC3BpQgZpHzXHDOtlaA9P2nGb1DcFKJr52WqYU4jTG2IPuUZakix3WU3BltL65e6ZJSlmnIb5h2EPLtYUbzXzBCDd6W2N0usIW5qih9LO4bikH_WHHmYijt_3E-bX1fff17erO5-XN9efr1b2Z7RuqJSDQMfBKdyFDgfcMq941w4D0wzb9na90p7sF7CSKWQordq4IJbqtZi4KfN7YE7JtiaXQ4z5AeTIJh_hZQ3BnJF25zRRHOlLSP9SATotUYyJQoAi5JKj6wvB9ZuWc9utPjVDNML6MubGH6bTbo3kjDdS4KAT4-AnP4saI2ZQ7FumiC6tBTDiBwoF4xqlLKD1OZUSnb-6RlKzD5tszX7tM0-bUN6g1Fi04fnAz61_M8WBZ8PAoeW3weXTbHBRYt5ZmcrehJe4_8Fhb287g</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Castro, Eduardo</creator><creator>Polosecki, Pablo</creator><creator>Rish, Irina</creator><creator>Pustina, Dorian</creator><creator>Warner, John H.</creator><creator>Wood, Andrew</creator><creator>Sampaio, Cristina</creator><creator>Cecchi, Guillermo A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7788-9069</orcidid><orcidid>https://orcid.org/0000-0002-0820-4601</orcidid></search><sort><creationdate>20180101</creationdate><title>Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease</title><author>Castro, Eduardo ; Polosecki, Pablo ; Rish, Irina ; Pustina, Dorian ; Warner, John H. ; Wood, Andrew ; Sampaio, Cristina ; Cecchi, Guillermo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Atrophy - diagnosis</topic><topic>Brain - pathology</topic><topic>Brain Mapping - methods</topic><topic>Classification</topic><topic>Disease Progression</topic><topic>Early Diagnosis</topic><topic>Female</topic><topic>Future motor impairment prediction</topic><topic>Humans</topic><topic>Huntington Disease - diagnosis</topic><topic>Huntington Disease - genetics</topic><topic>Huntington Disease - pathology</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multimodal Imaging - methods</topic><topic>Neuropsychological Tests</topic><topic>Premanifest Huntington's disease</topic><topic>Regular</topic><topic>Structural MRI</topic><topic>TRACK-HD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Eduardo</creatorcontrib><creatorcontrib>Polosecki, Pablo</creatorcontrib><creatorcontrib>Rish, Irina</creatorcontrib><creatorcontrib>Pustina, Dorian</creatorcontrib><creatorcontrib>Warner, John H.</creatorcontrib><creatorcontrib>Wood, Andrew</creatorcontrib><creatorcontrib>Sampaio, Cristina</creatorcontrib><creatorcontrib>Cecchi, Guillermo A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage clinical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Eduardo</au><au>Polosecki, Pablo</au><au>Rish, Irina</au><au>Pustina, Dorian</au><au>Warner, John H.</au><au>Wood, Andrew</au><au>Sampaio, Cristina</au><au>Cecchi, Guillermo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease</atitle><jtitle>NeuroImage clinical</jtitle><addtitle>Neuroimage Clin</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>19</volume><spage>443</spage><epage>453</epage><pages>443-453</pages><issn>2213-1582</issn><eissn>2213-1582</eissn><abstract>In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical diagnosis based on fixed impairment levels, as opposed to predicting impairment in time windows comparable to the duration of a clinical trial. Here we evaluate an approach to both detect atrophy patterns associated with early degeneration and provide a prognosis of motor impairment within 3 years, using data from the TRACK-HD study on 80 premanifest HD (pre-HD) individuals and 85 age- and sex-matched healthy controls. We integrate anatomical MRI information from gray matter concentrations (estimated via voxel-based morphometry) together with baseline data from demographic, genetic and motor domains to distinguish individuals at high risk of developing pronounced future motor impairment from those at low risk. We evaluate the ability of models to distinguish between these two groups solely using baseline imaging data, as well as in combination with longitudinal imaging or non-imaging data. Our models show improved performance for motor prognosis through the incorporation of imaging features to non-imaging data, reaching 88% cross-validated accuracy when using baseline non-longitudinal information, and detect informative correlates in the caudate nucleus and the thalamus both for motor prognosis and early atrophy detection. These results show the plausibility of using baseline imaging and basic demographic/genetic measures for early detection of individuals at high risk of severe future motor impairment in relatively short timeframes. •Detection of pre-HD subjects at high risk of impairment is key for clinical trials.•Prognostic models of motor impairment can aid the detection of this population.•Genetics only partially explains disease progression (need for other correlates).•We achieve improved prognosis with baseline imaging, demographics and motor data.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>29984153</pmid><doi>10.1016/j.nicl.2018.05.008</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7788-9069</orcidid><orcidid>https://orcid.org/0000-0002-0820-4601</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2213-1582
ispartof NeuroImage clinical, 2018-01, Vol.19, p.443-453
issn 2213-1582
2213-1582
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_909389c205d04a9b9f58108aa89c616f
source ScienceDirect Freedom Collection; PubMed Central (PMC)
subjects Adult
Aged
Atrophy - diagnosis
Brain - pathology
Brain Mapping - methods
Classification
Disease Progression
Early Diagnosis
Female
Future motor impairment prediction
Humans
Huntington Disease - diagnosis
Huntington Disease - genetics
Huntington Disease - pathology
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Middle Aged
Multimodal Imaging - methods
Neuropsychological Tests
Premanifest Huntington's disease
Regular
Structural MRI
TRACK-HD
title Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Baseline%20multimodal%20information%20predicts%20future%20motor%20impairment%20in%20premanifest%20Huntington's%20disease&rft.jtitle=NeuroImage%20clinical&rft.au=Castro,%20Eduardo&rft.date=2018-01-01&rft.volume=19&rft.spage=443&rft.epage=453&rft.pages=443-453&rft.issn=2213-1582&rft.eissn=2213-1582&rft_id=info:doi/10.1016/j.nicl.2018.05.008&rft_dat=%3Cproquest_doaj_%3E2067134219%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2067134219&rft_id=info:pmid/29984153&rfr_iscdi=true