Loading…
Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease
In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical diagnosis based on fixed impairment levels, as...
Saved in:
Published in: | NeuroImage clinical 2018-01, Vol.19, p.443-453 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473 |
---|---|
cites | cdi_FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473 |
container_end_page | 453 |
container_issue | |
container_start_page | 443 |
container_title | NeuroImage clinical |
container_volume | 19 |
creator | Castro, Eduardo Polosecki, Pablo Rish, Irina Pustina, Dorian Warner, John H. Wood, Andrew Sampaio, Cristina Cecchi, Guillermo A. |
description | In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical diagnosis based on fixed impairment levels, as opposed to predicting impairment in time windows comparable to the duration of a clinical trial. Here we evaluate an approach to both detect atrophy patterns associated with early degeneration and provide a prognosis of motor impairment within 3 years, using data from the TRACK-HD study on 80 premanifest HD (pre-HD) individuals and 85 age- and sex-matched healthy controls. We integrate anatomical MRI information from gray matter concentrations (estimated via voxel-based morphometry) together with baseline data from demographic, genetic and motor domains to distinguish individuals at high risk of developing pronounced future motor impairment from those at low risk. We evaluate the ability of models to distinguish between these two groups solely using baseline imaging data, as well as in combination with longitudinal imaging or non-imaging data. Our models show improved performance for motor prognosis through the incorporation of imaging features to non-imaging data, reaching 88% cross-validated accuracy when using baseline non-longitudinal information, and detect informative correlates in the caudate nucleus and the thalamus both for motor prognosis and early atrophy detection. These results show the plausibility of using baseline imaging and basic demographic/genetic measures for early detection of individuals at high risk of severe future motor impairment in relatively short timeframes.
•Detection of pre-HD subjects at high risk of impairment is key for clinical trials.•Prognostic models of motor impairment can aid the detection of this population.•Genetics only partially explains disease progression (need for other correlates).•We achieve improved prognosis with baseline imaging, demographics and motor data. |
doi_str_mv | 10.1016/j.nicl.2018.05.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_909389c205d04a9b9f58108aa89c616f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213158218301542</els_id><doaj_id>oai_doaj_org_article_909389c205d04a9b9f58108aa89c616f</doaj_id><sourcerecordid>2067134219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhU1paEKSP9BF8a7djKOXZQlKoQ3NAwLdtGtxR5amGmxpKsmB_Pve6aQh2UQbiatzP12d0zTvKekoofJi28Vgp44RqjrSd4SoN80JY5SvaK_Y22fn4-a8lC3BpQgZpHzXHDOtlaA9P2nGb1DcFKJr52WqYU4jTG2IPuUZakix3WU3BltL65e6ZJSlmnIb5h2EPLtYUbzXzBCDd6W2N0usIW5qih9LO4bikH_WHHmYijt_3E-bX1fff17erO5-XN9efr1b2Z7RuqJSDQMfBKdyFDgfcMq941w4D0wzb9na90p7sF7CSKWQordq4IJbqtZi4KfN7YE7JtiaXQ4z5AeTIJh_hZQ3BnJF25zRRHOlLSP9SATotUYyJQoAi5JKj6wvB9ZuWc9utPjVDNML6MubGH6bTbo3kjDdS4KAT4-AnP4saI2ZQ7FumiC6tBTDiBwoF4xqlLKD1OZUSnb-6RlKzD5tszX7tM0-bUN6g1Fi04fnAz61_M8WBZ8PAoeW3weXTbHBRYt5ZmcrehJe4_8Fhb287g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067134219</pqid></control><display><type>article</type><title>Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease</title><source>ScienceDirect Freedom Collection</source><source>PubMed Central (PMC)</source><creator>Castro, Eduardo ; Polosecki, Pablo ; Rish, Irina ; Pustina, Dorian ; Warner, John H. ; Wood, Andrew ; Sampaio, Cristina ; Cecchi, Guillermo A.</creator><creatorcontrib>Castro, Eduardo ; Polosecki, Pablo ; Rish, Irina ; Pustina, Dorian ; Warner, John H. ; Wood, Andrew ; Sampaio, Cristina ; Cecchi, Guillermo A.</creatorcontrib><description>In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical diagnosis based on fixed impairment levels, as opposed to predicting impairment in time windows comparable to the duration of a clinical trial. Here we evaluate an approach to both detect atrophy patterns associated with early degeneration and provide a prognosis of motor impairment within 3 years, using data from the TRACK-HD study on 80 premanifest HD (pre-HD) individuals and 85 age- and sex-matched healthy controls. We integrate anatomical MRI information from gray matter concentrations (estimated via voxel-based morphometry) together with baseline data from demographic, genetic and motor domains to distinguish individuals at high risk of developing pronounced future motor impairment from those at low risk. We evaluate the ability of models to distinguish between these two groups solely using baseline imaging data, as well as in combination with longitudinal imaging or non-imaging data. Our models show improved performance for motor prognosis through the incorporation of imaging features to non-imaging data, reaching 88% cross-validated accuracy when using baseline non-longitudinal information, and detect informative correlates in the caudate nucleus and the thalamus both for motor prognosis and early atrophy detection. These results show the plausibility of using baseline imaging and basic demographic/genetic measures for early detection of individuals at high risk of severe future motor impairment in relatively short timeframes.
•Detection of pre-HD subjects at high risk of impairment is key for clinical trials.•Prognostic models of motor impairment can aid the detection of this population.•Genetics only partially explains disease progression (need for other correlates).•We achieve improved prognosis with baseline imaging, demographics and motor data.</description><identifier>ISSN: 2213-1582</identifier><identifier>EISSN: 2213-1582</identifier><identifier>DOI: 10.1016/j.nicl.2018.05.008</identifier><identifier>PMID: 29984153</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Adult ; Aged ; Atrophy - diagnosis ; Brain - pathology ; Brain Mapping - methods ; Classification ; Disease Progression ; Early Diagnosis ; Female ; Future motor impairment prediction ; Humans ; Huntington Disease - diagnosis ; Huntington Disease - genetics ; Huntington Disease - pathology ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; Multimodal Imaging - methods ; Neuropsychological Tests ; Premanifest Huntington's disease ; Regular ; Structural MRI ; TRACK-HD</subject><ispartof>NeuroImage clinical, 2018-01, Vol.19, p.443-453</ispartof><rights>2018 The Authors</rights><rights>2018 The Authors 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473</citedby><cites>FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473</cites><orcidid>0000-0002-7788-9069 ; 0000-0002-0820-4601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029560/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2213158218301542$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3547,27922,27923,45778,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29984153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro, Eduardo</creatorcontrib><creatorcontrib>Polosecki, Pablo</creatorcontrib><creatorcontrib>Rish, Irina</creatorcontrib><creatorcontrib>Pustina, Dorian</creatorcontrib><creatorcontrib>Warner, John H.</creatorcontrib><creatorcontrib>Wood, Andrew</creatorcontrib><creatorcontrib>Sampaio, Cristina</creatorcontrib><creatorcontrib>Cecchi, Guillermo A.</creatorcontrib><title>Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease</title><title>NeuroImage clinical</title><addtitle>Neuroimage Clin</addtitle><description>In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical diagnosis based on fixed impairment levels, as opposed to predicting impairment in time windows comparable to the duration of a clinical trial. Here we evaluate an approach to both detect atrophy patterns associated with early degeneration and provide a prognosis of motor impairment within 3 years, using data from the TRACK-HD study on 80 premanifest HD (pre-HD) individuals and 85 age- and sex-matched healthy controls. We integrate anatomical MRI information from gray matter concentrations (estimated via voxel-based morphometry) together with baseline data from demographic, genetic and motor domains to distinguish individuals at high risk of developing pronounced future motor impairment from those at low risk. We evaluate the ability of models to distinguish between these two groups solely using baseline imaging data, as well as in combination with longitudinal imaging or non-imaging data. Our models show improved performance for motor prognosis through the incorporation of imaging features to non-imaging data, reaching 88% cross-validated accuracy when using baseline non-longitudinal information, and detect informative correlates in the caudate nucleus and the thalamus both for motor prognosis and early atrophy detection. These results show the plausibility of using baseline imaging and basic demographic/genetic measures for early detection of individuals at high risk of severe future motor impairment in relatively short timeframes.
•Detection of pre-HD subjects at high risk of impairment is key for clinical trials.•Prognostic models of motor impairment can aid the detection of this population.•Genetics only partially explains disease progression (need for other correlates).•We achieve improved prognosis with baseline imaging, demographics and motor data.</description><subject>Adult</subject><subject>Aged</subject><subject>Atrophy - diagnosis</subject><subject>Brain - pathology</subject><subject>Brain Mapping - methods</subject><subject>Classification</subject><subject>Disease Progression</subject><subject>Early Diagnosis</subject><subject>Female</subject><subject>Future motor impairment prediction</subject><subject>Humans</subject><subject>Huntington Disease - diagnosis</subject><subject>Huntington Disease - genetics</subject><subject>Huntington Disease - pathology</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multimodal Imaging - methods</subject><subject>Neuropsychological Tests</subject><subject>Premanifest Huntington's disease</subject><subject>Regular</subject><subject>Structural MRI</subject><subject>TRACK-HD</subject><issn>2213-1582</issn><issn>2213-1582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtr3DAUhU1paEKSP9BF8a7djKOXZQlKoQ3NAwLdtGtxR5amGmxpKsmB_Pve6aQh2UQbiatzP12d0zTvKekoofJi28Vgp44RqjrSd4SoN80JY5SvaK_Y22fn4-a8lC3BpQgZpHzXHDOtlaA9P2nGb1DcFKJr52WqYU4jTG2IPuUZakix3WU3BltL65e6ZJSlmnIb5h2EPLtYUbzXzBCDd6W2N0usIW5qih9LO4bikH_WHHmYijt_3E-bX1fff17erO5-XN9efr1b2Z7RuqJSDQMfBKdyFDgfcMq941w4D0wzb9na90p7sF7CSKWQordq4IJbqtZi4KfN7YE7JtiaXQ4z5AeTIJh_hZQ3BnJF25zRRHOlLSP9SATotUYyJQoAi5JKj6wvB9ZuWc9utPjVDNML6MubGH6bTbo3kjDdS4KAT4-AnP4saI2ZQ7FumiC6tBTDiBwoF4xqlLKD1OZUSnb-6RlKzD5tszX7tM0-bUN6g1Fi04fnAz61_M8WBZ8PAoeW3weXTbHBRYt5ZmcrehJe4_8Fhb287g</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Castro, Eduardo</creator><creator>Polosecki, Pablo</creator><creator>Rish, Irina</creator><creator>Pustina, Dorian</creator><creator>Warner, John H.</creator><creator>Wood, Andrew</creator><creator>Sampaio, Cristina</creator><creator>Cecchi, Guillermo A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7788-9069</orcidid><orcidid>https://orcid.org/0000-0002-0820-4601</orcidid></search><sort><creationdate>20180101</creationdate><title>Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease</title><author>Castro, Eduardo ; Polosecki, Pablo ; Rish, Irina ; Pustina, Dorian ; Warner, John H. ; Wood, Andrew ; Sampaio, Cristina ; Cecchi, Guillermo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Atrophy - diagnosis</topic><topic>Brain - pathology</topic><topic>Brain Mapping - methods</topic><topic>Classification</topic><topic>Disease Progression</topic><topic>Early Diagnosis</topic><topic>Female</topic><topic>Future motor impairment prediction</topic><topic>Humans</topic><topic>Huntington Disease - diagnosis</topic><topic>Huntington Disease - genetics</topic><topic>Huntington Disease - pathology</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multimodal Imaging - methods</topic><topic>Neuropsychological Tests</topic><topic>Premanifest Huntington's disease</topic><topic>Regular</topic><topic>Structural MRI</topic><topic>TRACK-HD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Eduardo</creatorcontrib><creatorcontrib>Polosecki, Pablo</creatorcontrib><creatorcontrib>Rish, Irina</creatorcontrib><creatorcontrib>Pustina, Dorian</creatorcontrib><creatorcontrib>Warner, John H.</creatorcontrib><creatorcontrib>Wood, Andrew</creatorcontrib><creatorcontrib>Sampaio, Cristina</creatorcontrib><creatorcontrib>Cecchi, Guillermo A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage clinical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Eduardo</au><au>Polosecki, Pablo</au><au>Rish, Irina</au><au>Pustina, Dorian</au><au>Warner, John H.</au><au>Wood, Andrew</au><au>Sampaio, Cristina</au><au>Cecchi, Guillermo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease</atitle><jtitle>NeuroImage clinical</jtitle><addtitle>Neuroimage Clin</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>19</volume><spage>443</spage><epage>453</epage><pages>443-453</pages><issn>2213-1582</issn><eissn>2213-1582</eissn><abstract>In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical diagnosis based on fixed impairment levels, as opposed to predicting impairment in time windows comparable to the duration of a clinical trial. Here we evaluate an approach to both detect atrophy patterns associated with early degeneration and provide a prognosis of motor impairment within 3 years, using data from the TRACK-HD study on 80 premanifest HD (pre-HD) individuals and 85 age- and sex-matched healthy controls. We integrate anatomical MRI information from gray matter concentrations (estimated via voxel-based morphometry) together with baseline data from demographic, genetic and motor domains to distinguish individuals at high risk of developing pronounced future motor impairment from those at low risk. We evaluate the ability of models to distinguish between these two groups solely using baseline imaging data, as well as in combination with longitudinal imaging or non-imaging data. Our models show improved performance for motor prognosis through the incorporation of imaging features to non-imaging data, reaching 88% cross-validated accuracy when using baseline non-longitudinal information, and detect informative correlates in the caudate nucleus and the thalamus both for motor prognosis and early atrophy detection. These results show the plausibility of using baseline imaging and basic demographic/genetic measures for early detection of individuals at high risk of severe future motor impairment in relatively short timeframes.
•Detection of pre-HD subjects at high risk of impairment is key for clinical trials.•Prognostic models of motor impairment can aid the detection of this population.•Genetics only partially explains disease progression (need for other correlates).•We achieve improved prognosis with baseline imaging, demographics and motor data.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>29984153</pmid><doi>10.1016/j.nicl.2018.05.008</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7788-9069</orcidid><orcidid>https://orcid.org/0000-0002-0820-4601</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2213-1582 |
ispartof | NeuroImage clinical, 2018-01, Vol.19, p.443-453 |
issn | 2213-1582 2213-1582 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_909389c205d04a9b9f58108aa89c616f |
source | ScienceDirect Freedom Collection; PubMed Central (PMC) |
subjects | Adult Aged Atrophy - diagnosis Brain - pathology Brain Mapping - methods Classification Disease Progression Early Diagnosis Female Future motor impairment prediction Humans Huntington Disease - diagnosis Huntington Disease - genetics Huntington Disease - pathology Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Middle Aged Multimodal Imaging - methods Neuropsychological Tests Premanifest Huntington's disease Regular Structural MRI TRACK-HD |
title | Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Baseline%20multimodal%20information%20predicts%20future%20motor%20impairment%20in%20premanifest%20Huntington's%20disease&rft.jtitle=NeuroImage%20clinical&rft.au=Castro,%20Eduardo&rft.date=2018-01-01&rft.volume=19&rft.spage=443&rft.epage=453&rft.pages=443-453&rft.issn=2213-1582&rft.eissn=2213-1582&rft_id=info:doi/10.1016/j.nicl.2018.05.008&rft_dat=%3Cproquest_doaj_%3E2067134219%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-16877374316d4841a313fe334efa292fc2bf589facf6ad164645c87343c18b473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2067134219&rft_id=info:pmid/29984153&rfr_iscdi=true |