Loading…

A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping

The manner in which quadrupeds change their locomotive patterns—walking, trotting, and galloping—with changing speed is poorly understood. In this paper, we provide evidence for interlimb coordination during gait transitions using a quadruped robot for which coordination between the legs can be self...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-03, Vol.7 (1), p.277-277, Article 277
Main Authors: Owaki, Dai, Ishiguro, Akio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The manner in which quadrupeds change their locomotive patterns—walking, trotting, and galloping—with changing speed is poorly understood. In this paper, we provide evidence for interlimb coordination during gait transitions using a quadruped robot for which coordination between the legs can be self-organized through a simple “central pattern generator” (CPG) model. We demonstrate spontaneous gait transitions between energy-efficient patterns by changing only the parameter related to speed. Interlimb coordination was achieved with the use of local load sensing only without any preprogrammed patterns. Our model exploits physical communication through the body, suggesting that knowledge of physical communication is required to understand the leg coordination mechanism in legged animals and to establish design principles for legged robots that can reproduce flexible and efficient locomotion.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-00348-9