Loading…
Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling
Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to det...
Saved in:
Published in: | Atmospheric chemistry and physics 2018-08, Vol.18 (16), p.12433-12460 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13 |
container_end_page | 12460 |
container_issue | 16 |
container_start_page | 12433 |
container_title | Atmospheric chemistry and physics |
container_volume | 18 |
creator | Hodshire, Anna L Palm, Brett B Alexander, M. Lizabeth Bian, Qijing Campuzano-Jost, Pedro Cross, Eben S Day, Douglas A de Sá, Suzane S Guenther, Alex B Hansel, Armin Hunter, James F Jud, Werner Karl, Thomas Kim, Saewung Kroll, Jesse H Park, Jeong-Hoo Peng, Zhe Seco, Roger Smith, James N Jimenez, Jose L Pierce, Jeffrey R |
description | Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size-distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09 and 0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter. |
doi_str_mv | 10.5194/acp-18-12433-2018 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_90a63e18220c4aafb1dc38a56236cec5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A552071575</galeid><doaj_id>oai_doaj_org_article_90a63e18220c4aafb1dc38a56236cec5</doaj_id><sourcerecordid>A552071575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13</originalsourceid><addsrcrecordid>eNptktuKFDEQhhtRcF19AO8avRLsNZVDp_tyGTwMLAgerkNtOpnJ0JOMSZrd8UV8XdM9y-KA5CKpyld_UYeqeg3kSkDPP6A-NNA1QDljDSXQPakuoO1IIxnlT_95P69epLQjhAoC_KL6swo-5YjOO7-p_aRHg9kF_77WwQ_GpwcL_VDrrdm7Ah9r5-tw74blr7ZjuKujQZ1DTPWUZqHkfptmmGF3Oy3U3mCaotkbn9OihiaGFMZ673QMh-0xOY3FCoMZi8LL6pnFMZlXD_dl9fPTxx-rL83N18_r1fVNowWQXCoV2HLRWTnwTvYtaq57y4SWAqRsCWDfEiKslEgYCNIz7AhHQGQWiQF2Wa1PukPAnTpEt8d4VAGdWhwhbhTG7EpbVE-wZQY6SonmiPYWBs06FC1lrTZaFK03J62QslNJu2z0trTRG50V8FYCZQV6e4IOMfyaTMpqF6boS42Kkp4TTucZPlIbLJmdt6HMSJfua3UtBCUShJwTXv2HKmcogyqJjXXFfxbw7iygMNnc5w1OKan192_nLJzYMp6UorGP3QGi5p1TZecUdGrZOTXvHPsLawHKOw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094042124</pqid></control><display><type>article</type><title>Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling</title><source>Publicly Available Content Database</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Hodshire, Anna L ; Palm, Brett B ; Alexander, M. Lizabeth ; Bian, Qijing ; Campuzano-Jost, Pedro ; Cross, Eben S ; Day, Douglas A ; de Sá, Suzane S ; Guenther, Alex B ; Hansel, Armin ; Hunter, James F ; Jud, Werner ; Karl, Thomas ; Kim, Saewung ; Kroll, Jesse H ; Park, Jeong-Hoo ; Peng, Zhe ; Seco, Roger ; Smith, James N ; Jimenez, Jose L ; Pierce, Jeffrey R</creator><creatorcontrib>Hodshire, Anna L ; Palm, Brett B ; Alexander, M. Lizabeth ; Bian, Qijing ; Campuzano-Jost, Pedro ; Cross, Eben S ; Day, Douglas A ; de Sá, Suzane S ; Guenther, Alex B ; Hansel, Armin ; Hunter, James F ; Jud, Werner ; Karl, Thomas ; Kim, Saewung ; Kroll, Jesse H ; Park, Jeong-Hoo ; Peng, Zhe ; Seco, Roger ; Smith, James N ; Jimenez, Jose L ; Pierce, Jeffrey R ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size-distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09 and 0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-18-12433-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Accommodation ; Accommodation coefficient ; Aerosols ; Ageing ; Aging ; Atmospheric models ; Atmospheric nucleation ; Chemical evolution ; Chemical properties ; Computer simulation ; Condensation ; Condensation (Physics) ; Constants ; Diffusion ; Dye dispersion ; Dynamics ; Environmental aspects ; Equivalence ; Evolution ; Fragmentation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Isoprene ; Meteorological research ; Microphysics ; Modelling ; Monoterpenes ; Natural history ; Nucleation ; Organic chemistry ; Organic compounds ; Oxidation ; Oxidation-reduction reactions ; Oxidizing agents ; Particle diffusion ; Particle formation ; Particle size distribution ; Rate constants ; Reactors ; Secondary aerosols ; Size distribution ; Studies ; Sulfuric acid ; Sulphuric acid ; Terpenes ; Uptake ; Volatility</subject><ispartof>Atmospheric chemistry and physics, 2018-08, Vol.18 (16), p.12433-12460</ispartof><rights>COPYRIGHT 2018 Copernicus GmbH</rights><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13</citedby><cites>FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13</cites><orcidid>0000-0003-4267-0435 ; 0000-0002-6823-452X ; 0000-0003-3930-010X ; 0000-0002-4241-838X ; 0000-0001-6203-1847 ; 0000-0002-1062-2394 ; 0000-0003-4677-8224 ; 0000-0002-1511-9026 ; 0000-0002-6275-521X ; 0000-0001-6283-8288 ; 0000-0003-2869-9426 ; 0000-0001-5548-0812 ; 0000-0002-2078-9956 ; 0000-0002-5099-3659 ; 0000-0003-3213-4233 ; 0000000328699426 ; 000000033930010X ; 0000000332134233 ; 0000000210622394 ; 0000000162031847 ; 0000000215119026 ; 0000000155480812 ; 000000026823452X ; 0000000346778224 ; 0000000342670435 ; 0000000250993659 ; 0000000220789956 ; 000000024241838X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2094042124/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2094042124?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2102,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1467123$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hodshire, Anna L</creatorcontrib><creatorcontrib>Palm, Brett B</creatorcontrib><creatorcontrib>Alexander, M. Lizabeth</creatorcontrib><creatorcontrib>Bian, Qijing</creatorcontrib><creatorcontrib>Campuzano-Jost, Pedro</creatorcontrib><creatorcontrib>Cross, Eben S</creatorcontrib><creatorcontrib>Day, Douglas A</creatorcontrib><creatorcontrib>de Sá, Suzane S</creatorcontrib><creatorcontrib>Guenther, Alex B</creatorcontrib><creatorcontrib>Hansel, Armin</creatorcontrib><creatorcontrib>Hunter, James F</creatorcontrib><creatorcontrib>Jud, Werner</creatorcontrib><creatorcontrib>Karl, Thomas</creatorcontrib><creatorcontrib>Kim, Saewung</creatorcontrib><creatorcontrib>Kroll, Jesse H</creatorcontrib><creatorcontrib>Park, Jeong-Hoo</creatorcontrib><creatorcontrib>Peng, Zhe</creatorcontrib><creatorcontrib>Seco, Roger</creatorcontrib><creatorcontrib>Smith, James N</creatorcontrib><creatorcontrib>Jimenez, Jose L</creatorcontrib><creatorcontrib>Pierce, Jeffrey R</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling</title><title>Atmospheric chemistry and physics</title><description>Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size-distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09 and 0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter.</description><subject>Accommodation</subject><subject>Accommodation coefficient</subject><subject>Aerosols</subject><subject>Ageing</subject><subject>Aging</subject><subject>Atmospheric models</subject><subject>Atmospheric nucleation</subject><subject>Chemical evolution</subject><subject>Chemical properties</subject><subject>Computer simulation</subject><subject>Condensation</subject><subject>Condensation (Physics)</subject><subject>Constants</subject><subject>Diffusion</subject><subject>Dye dispersion</subject><subject>Dynamics</subject><subject>Environmental aspects</subject><subject>Equivalence</subject><subject>Evolution</subject><subject>Fragmentation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Isoprene</subject><subject>Meteorological research</subject><subject>Microphysics</subject><subject>Modelling</subject><subject>Monoterpenes</subject><subject>Natural history</subject><subject>Nucleation</subject><subject>Organic chemistry</subject><subject>Organic compounds</subject><subject>Oxidation</subject><subject>Oxidation-reduction reactions</subject><subject>Oxidizing agents</subject><subject>Particle diffusion</subject><subject>Particle formation</subject><subject>Particle size distribution</subject><subject>Rate constants</subject><subject>Reactors</subject><subject>Secondary aerosols</subject><subject>Size distribution</subject><subject>Studies</subject><subject>Sulfuric acid</subject><subject>Sulphuric acid</subject><subject>Terpenes</subject><subject>Uptake</subject><subject>Volatility</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptktuKFDEQhhtRcF19AO8avRLsNZVDp_tyGTwMLAgerkNtOpnJ0JOMSZrd8UV8XdM9y-KA5CKpyld_UYeqeg3kSkDPP6A-NNA1QDljDSXQPakuoO1IIxnlT_95P69epLQjhAoC_KL6swo-5YjOO7-p_aRHg9kF_77WwQ_GpwcL_VDrrdm7Ah9r5-tw74blr7ZjuKujQZ1DTPWUZqHkfptmmGF3Oy3U3mCaotkbn9OihiaGFMZ673QMh-0xOY3FCoMZi8LL6pnFMZlXD_dl9fPTxx-rL83N18_r1fVNowWQXCoV2HLRWTnwTvYtaq57y4SWAqRsCWDfEiKslEgYCNIz7AhHQGQWiQF2Wa1PukPAnTpEt8d4VAGdWhwhbhTG7EpbVE-wZQY6SonmiPYWBs06FC1lrTZaFK03J62QslNJu2z0trTRG50V8FYCZQV6e4IOMfyaTMpqF6boS42Kkp4TTucZPlIbLJmdt6HMSJfua3UtBCUShJwTXv2HKmcogyqJjXXFfxbw7iygMNnc5w1OKan192_nLJzYMp6UorGP3QGi5p1TZecUdGrZOTXvHPsLawHKOw</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Hodshire, Anna L</creator><creator>Palm, Brett B</creator><creator>Alexander, M. Lizabeth</creator><creator>Bian, Qijing</creator><creator>Campuzano-Jost, Pedro</creator><creator>Cross, Eben S</creator><creator>Day, Douglas A</creator><creator>de Sá, Suzane S</creator><creator>Guenther, Alex B</creator><creator>Hansel, Armin</creator><creator>Hunter, James F</creator><creator>Jud, Werner</creator><creator>Karl, Thomas</creator><creator>Kim, Saewung</creator><creator>Kroll, Jesse H</creator><creator>Park, Jeong-Hoo</creator><creator>Peng, Zhe</creator><creator>Seco, Roger</creator><creator>Smith, James N</creator><creator>Jimenez, Jose L</creator><creator>Pierce, Jeffrey R</creator><general>Copernicus GmbH</general><general>European Geosciences Union</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4267-0435</orcidid><orcidid>https://orcid.org/0000-0002-6823-452X</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0002-4241-838X</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0002-1062-2394</orcidid><orcidid>https://orcid.org/0000-0003-4677-8224</orcidid><orcidid>https://orcid.org/0000-0002-1511-9026</orcidid><orcidid>https://orcid.org/0000-0002-6275-521X</orcidid><orcidid>https://orcid.org/0000-0001-6283-8288</orcidid><orcidid>https://orcid.org/0000-0003-2869-9426</orcidid><orcidid>https://orcid.org/0000-0001-5548-0812</orcidid><orcidid>https://orcid.org/0000-0002-2078-9956</orcidid><orcidid>https://orcid.org/0000-0002-5099-3659</orcidid><orcidid>https://orcid.org/0000-0003-3213-4233</orcidid><orcidid>https://orcid.org/0000000328699426</orcidid><orcidid>https://orcid.org/000000033930010X</orcidid><orcidid>https://orcid.org/0000000332134233</orcidid><orcidid>https://orcid.org/0000000210622394</orcidid><orcidid>https://orcid.org/0000000162031847</orcidid><orcidid>https://orcid.org/0000000215119026</orcidid><orcidid>https://orcid.org/0000000155480812</orcidid><orcidid>https://orcid.org/000000026823452X</orcidid><orcidid>https://orcid.org/0000000346778224</orcidid><orcidid>https://orcid.org/0000000342670435</orcidid><orcidid>https://orcid.org/0000000250993659</orcidid><orcidid>https://orcid.org/0000000220789956</orcidid><orcidid>https://orcid.org/000000024241838X</orcidid></search><sort><creationdate>20180828</creationdate><title>Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling</title><author>Hodshire, Anna L ; Palm, Brett B ; Alexander, M. Lizabeth ; Bian, Qijing ; Campuzano-Jost, Pedro ; Cross, Eben S ; Day, Douglas A ; de Sá, Suzane S ; Guenther, Alex B ; Hansel, Armin ; Hunter, James F ; Jud, Werner ; Karl, Thomas ; Kim, Saewung ; Kroll, Jesse H ; Park, Jeong-Hoo ; Peng, Zhe ; Seco, Roger ; Smith, James N ; Jimenez, Jose L ; Pierce, Jeffrey R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accommodation</topic><topic>Accommodation coefficient</topic><topic>Aerosols</topic><topic>Ageing</topic><topic>Aging</topic><topic>Atmospheric models</topic><topic>Atmospheric nucleation</topic><topic>Chemical evolution</topic><topic>Chemical properties</topic><topic>Computer simulation</topic><topic>Condensation</topic><topic>Condensation (Physics)</topic><topic>Constants</topic><topic>Diffusion</topic><topic>Dye dispersion</topic><topic>Dynamics</topic><topic>Environmental aspects</topic><topic>Equivalence</topic><topic>Evolution</topic><topic>Fragmentation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Isoprene</topic><topic>Meteorological research</topic><topic>Microphysics</topic><topic>Modelling</topic><topic>Monoterpenes</topic><topic>Natural history</topic><topic>Nucleation</topic><topic>Organic chemistry</topic><topic>Organic compounds</topic><topic>Oxidation</topic><topic>Oxidation-reduction reactions</topic><topic>Oxidizing agents</topic><topic>Particle diffusion</topic><topic>Particle formation</topic><topic>Particle size distribution</topic><topic>Rate constants</topic><topic>Reactors</topic><topic>Secondary aerosols</topic><topic>Size distribution</topic><topic>Studies</topic><topic>Sulfuric acid</topic><topic>Sulphuric acid</topic><topic>Terpenes</topic><topic>Uptake</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hodshire, Anna L</creatorcontrib><creatorcontrib>Palm, Brett B</creatorcontrib><creatorcontrib>Alexander, M. Lizabeth</creatorcontrib><creatorcontrib>Bian, Qijing</creatorcontrib><creatorcontrib>Campuzano-Jost, Pedro</creatorcontrib><creatorcontrib>Cross, Eben S</creatorcontrib><creatorcontrib>Day, Douglas A</creatorcontrib><creatorcontrib>de Sá, Suzane S</creatorcontrib><creatorcontrib>Guenther, Alex B</creatorcontrib><creatorcontrib>Hansel, Armin</creatorcontrib><creatorcontrib>Hunter, James F</creatorcontrib><creatorcontrib>Jud, Werner</creatorcontrib><creatorcontrib>Karl, Thomas</creatorcontrib><creatorcontrib>Kim, Saewung</creatorcontrib><creatorcontrib>Kroll, Jesse H</creatorcontrib><creatorcontrib>Park, Jeong-Hoo</creatorcontrib><creatorcontrib>Peng, Zhe</creatorcontrib><creatorcontrib>Seco, Roger</creatorcontrib><creatorcontrib>Smith, James N</creatorcontrib><creatorcontrib>Jimenez, Jose L</creatorcontrib><creatorcontrib>Pierce, Jeffrey R</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodshire, Anna L</au><au>Palm, Brett B</au><au>Alexander, M. Lizabeth</au><au>Bian, Qijing</au><au>Campuzano-Jost, Pedro</au><au>Cross, Eben S</au><au>Day, Douglas A</au><au>de Sá, Suzane S</au><au>Guenther, Alex B</au><au>Hansel, Armin</au><au>Hunter, James F</au><au>Jud, Werner</au><au>Karl, Thomas</au><au>Kim, Saewung</au><au>Kroll, Jesse H</au><au>Park, Jeong-Hoo</au><au>Peng, Zhe</au><au>Seco, Roger</au><au>Smith, James N</au><au>Jimenez, Jose L</au><au>Pierce, Jeffrey R</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2018-08-28</date><risdate>2018</risdate><volume>18</volume><issue>16</issue><spage>12433</spage><epage>12460</epage><pages>12433-12460</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size-distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09 and 0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-18-12433-2018</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-4267-0435</orcidid><orcidid>https://orcid.org/0000-0002-6823-452X</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0002-4241-838X</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0002-1062-2394</orcidid><orcidid>https://orcid.org/0000-0003-4677-8224</orcidid><orcidid>https://orcid.org/0000-0002-1511-9026</orcidid><orcidid>https://orcid.org/0000-0002-6275-521X</orcidid><orcidid>https://orcid.org/0000-0001-6283-8288</orcidid><orcidid>https://orcid.org/0000-0003-2869-9426</orcidid><orcidid>https://orcid.org/0000-0001-5548-0812</orcidid><orcidid>https://orcid.org/0000-0002-2078-9956</orcidid><orcidid>https://orcid.org/0000-0002-5099-3659</orcidid><orcidid>https://orcid.org/0000-0003-3213-4233</orcidid><orcidid>https://orcid.org/0000000328699426</orcidid><orcidid>https://orcid.org/000000033930010X</orcidid><orcidid>https://orcid.org/0000000332134233</orcidid><orcidid>https://orcid.org/0000000210622394</orcidid><orcidid>https://orcid.org/0000000162031847</orcidid><orcidid>https://orcid.org/0000000215119026</orcidid><orcidid>https://orcid.org/0000000155480812</orcidid><orcidid>https://orcid.org/000000026823452X</orcidid><orcidid>https://orcid.org/0000000346778224</orcidid><orcidid>https://orcid.org/0000000342670435</orcidid><orcidid>https://orcid.org/0000000250993659</orcidid><orcidid>https://orcid.org/0000000220789956</orcidid><orcidid>https://orcid.org/000000024241838X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2018-08, Vol.18 (16), p.12433-12460 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_90a63e18220c4aafb1dc38a56236cec5 |
source | Publicly Available Content Database; Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Accommodation Accommodation coefficient Aerosols Ageing Aging Atmospheric models Atmospheric nucleation Chemical evolution Chemical properties Computer simulation Condensation Condensation (Physics) Constants Diffusion Dye dispersion Dynamics Environmental aspects Equivalence Evolution Fragmentation INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Isoprene Meteorological research Microphysics Modelling Monoterpenes Natural history Nucleation Organic chemistry Organic compounds Oxidation Oxidation-reduction reactions Oxidizing agents Particle diffusion Particle formation Particle size distribution Rate constants Reactors Secondary aerosols Size distribution Studies Sulfuric acid Sulphuric acid Terpenes Uptake Volatility |
title | Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20nucleation,%20condensation,%20and%20chemistry%20in%20oxidation%20flow%20reactors%20using%20size-distribution%20measurements%20and%20aerosol%20microphysical%20modeling&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Hodshire,%20Anna%20L&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2018-08-28&rft.volume=18&rft.issue=16&rft.spage=12433&rft.epage=12460&rft.pages=12433-12460&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-18-12433-2018&rft_dat=%3Cgale_doaj_%3EA552071575%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2094042124&rft_id=info:pmid/&rft_galeid=A552071575&rfr_iscdi=true |