Loading…

Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling

Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to det...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2018-08, Vol.18 (16), p.12433-12460
Main Authors: Hodshire, Anna L, Palm, Brett B, Alexander, M. Lizabeth, Bian, Qijing, Campuzano-Jost, Pedro, Cross, Eben S, Day, Douglas A, de Sá, Suzane S, Guenther, Alex B, Hansel, Armin, Hunter, James F, Jud, Werner, Karl, Thomas, Kim, Saewung, Kroll, Jesse H, Park, Jeong-Hoo, Peng, Zhe, Seco, Roger, Smith, James N, Jimenez, Jose L, Pierce, Jeffrey R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13
cites cdi_FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13
container_end_page 12460
container_issue 16
container_start_page 12433
container_title Atmospheric chemistry and physics
container_volume 18
creator Hodshire, Anna L
Palm, Brett B
Alexander, M. Lizabeth
Bian, Qijing
Campuzano-Jost, Pedro
Cross, Eben S
Day, Douglas A
de Sá, Suzane S
Guenther, Alex B
Hansel, Armin
Hunter, James F
Jud, Werner
Karl, Thomas
Kim, Saewung
Kroll, Jesse H
Park, Jeong-Hoo
Peng, Zhe
Seco, Roger
Smith, James N
Jimenez, Jose L
Pierce, Jeffrey R
description Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size-distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09 and 0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter.
doi_str_mv 10.5194/acp-18-12433-2018
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_90a63e18220c4aafb1dc38a56236cec5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A552071575</galeid><doaj_id>oai_doaj_org_article_90a63e18220c4aafb1dc38a56236cec5</doaj_id><sourcerecordid>A552071575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13</originalsourceid><addsrcrecordid>eNptktuKFDEQhhtRcF19AO8avRLsNZVDp_tyGTwMLAgerkNtOpnJ0JOMSZrd8UV8XdM9y-KA5CKpyld_UYeqeg3kSkDPP6A-NNA1QDljDSXQPakuoO1IIxnlT_95P69epLQjhAoC_KL6swo-5YjOO7-p_aRHg9kF_77WwQ_GpwcL_VDrrdm7Ah9r5-tw74blr7ZjuKujQZ1DTPWUZqHkfptmmGF3Oy3U3mCaotkbn9OihiaGFMZ673QMh-0xOY3FCoMZi8LL6pnFMZlXD_dl9fPTxx-rL83N18_r1fVNowWQXCoV2HLRWTnwTvYtaq57y4SWAqRsCWDfEiKslEgYCNIz7AhHQGQWiQF2Wa1PukPAnTpEt8d4VAGdWhwhbhTG7EpbVE-wZQY6SonmiPYWBs06FC1lrTZaFK03J62QslNJu2z0trTRG50V8FYCZQV6e4IOMfyaTMpqF6boS42Kkp4TTucZPlIbLJmdt6HMSJfua3UtBCUShJwTXv2HKmcogyqJjXXFfxbw7iygMNnc5w1OKan192_nLJzYMp6UorGP3QGi5p1TZecUdGrZOTXvHPsLawHKOw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094042124</pqid></control><display><type>article</type><title>Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling</title><source>Publicly Available Content Database</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Hodshire, Anna L ; Palm, Brett B ; Alexander, M. Lizabeth ; Bian, Qijing ; Campuzano-Jost, Pedro ; Cross, Eben S ; Day, Douglas A ; de Sá, Suzane S ; Guenther, Alex B ; Hansel, Armin ; Hunter, James F ; Jud, Werner ; Karl, Thomas ; Kim, Saewung ; Kroll, Jesse H ; Park, Jeong-Hoo ; Peng, Zhe ; Seco, Roger ; Smith, James N ; Jimenez, Jose L ; Pierce, Jeffrey R</creator><creatorcontrib>Hodshire, Anna L ; Palm, Brett B ; Alexander, M. Lizabeth ; Bian, Qijing ; Campuzano-Jost, Pedro ; Cross, Eben S ; Day, Douglas A ; de Sá, Suzane S ; Guenther, Alex B ; Hansel, Armin ; Hunter, James F ; Jud, Werner ; Karl, Thomas ; Kim, Saewung ; Kroll, Jesse H ; Park, Jeong-Hoo ; Peng, Zhe ; Seco, Roger ; Smith, James N ; Jimenez, Jose L ; Pierce, Jeffrey R ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size-distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09 and 0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-18-12433-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Accommodation ; Accommodation coefficient ; Aerosols ; Ageing ; Aging ; Atmospheric models ; Atmospheric nucleation ; Chemical evolution ; Chemical properties ; Computer simulation ; Condensation ; Condensation (Physics) ; Constants ; Diffusion ; Dye dispersion ; Dynamics ; Environmental aspects ; Equivalence ; Evolution ; Fragmentation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Isoprene ; Meteorological research ; Microphysics ; Modelling ; Monoterpenes ; Natural history ; Nucleation ; Organic chemistry ; Organic compounds ; Oxidation ; Oxidation-reduction reactions ; Oxidizing agents ; Particle diffusion ; Particle formation ; Particle size distribution ; Rate constants ; Reactors ; Secondary aerosols ; Size distribution ; Studies ; Sulfuric acid ; Sulphuric acid ; Terpenes ; Uptake ; Volatility</subject><ispartof>Atmospheric chemistry and physics, 2018-08, Vol.18 (16), p.12433-12460</ispartof><rights>COPYRIGHT 2018 Copernicus GmbH</rights><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13</citedby><cites>FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13</cites><orcidid>0000-0003-4267-0435 ; 0000-0002-6823-452X ; 0000-0003-3930-010X ; 0000-0002-4241-838X ; 0000-0001-6203-1847 ; 0000-0002-1062-2394 ; 0000-0003-4677-8224 ; 0000-0002-1511-9026 ; 0000-0002-6275-521X ; 0000-0001-6283-8288 ; 0000-0003-2869-9426 ; 0000-0001-5548-0812 ; 0000-0002-2078-9956 ; 0000-0002-5099-3659 ; 0000-0003-3213-4233 ; 0000000328699426 ; 000000033930010X ; 0000000332134233 ; 0000000210622394 ; 0000000162031847 ; 0000000215119026 ; 0000000155480812 ; 000000026823452X ; 0000000346778224 ; 0000000342670435 ; 0000000250993659 ; 0000000220789956 ; 000000024241838X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2094042124/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2094042124?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2102,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1467123$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hodshire, Anna L</creatorcontrib><creatorcontrib>Palm, Brett B</creatorcontrib><creatorcontrib>Alexander, M. Lizabeth</creatorcontrib><creatorcontrib>Bian, Qijing</creatorcontrib><creatorcontrib>Campuzano-Jost, Pedro</creatorcontrib><creatorcontrib>Cross, Eben S</creatorcontrib><creatorcontrib>Day, Douglas A</creatorcontrib><creatorcontrib>de Sá, Suzane S</creatorcontrib><creatorcontrib>Guenther, Alex B</creatorcontrib><creatorcontrib>Hansel, Armin</creatorcontrib><creatorcontrib>Hunter, James F</creatorcontrib><creatorcontrib>Jud, Werner</creatorcontrib><creatorcontrib>Karl, Thomas</creatorcontrib><creatorcontrib>Kim, Saewung</creatorcontrib><creatorcontrib>Kroll, Jesse H</creatorcontrib><creatorcontrib>Park, Jeong-Hoo</creatorcontrib><creatorcontrib>Peng, Zhe</creatorcontrib><creatorcontrib>Seco, Roger</creatorcontrib><creatorcontrib>Smith, James N</creatorcontrib><creatorcontrib>Jimenez, Jose L</creatorcontrib><creatorcontrib>Pierce, Jeffrey R</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling</title><title>Atmospheric chemistry and physics</title><description>Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size-distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09 and 0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter.</description><subject>Accommodation</subject><subject>Accommodation coefficient</subject><subject>Aerosols</subject><subject>Ageing</subject><subject>Aging</subject><subject>Atmospheric models</subject><subject>Atmospheric nucleation</subject><subject>Chemical evolution</subject><subject>Chemical properties</subject><subject>Computer simulation</subject><subject>Condensation</subject><subject>Condensation (Physics)</subject><subject>Constants</subject><subject>Diffusion</subject><subject>Dye dispersion</subject><subject>Dynamics</subject><subject>Environmental aspects</subject><subject>Equivalence</subject><subject>Evolution</subject><subject>Fragmentation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Isoprene</subject><subject>Meteorological research</subject><subject>Microphysics</subject><subject>Modelling</subject><subject>Monoterpenes</subject><subject>Natural history</subject><subject>Nucleation</subject><subject>Organic chemistry</subject><subject>Organic compounds</subject><subject>Oxidation</subject><subject>Oxidation-reduction reactions</subject><subject>Oxidizing agents</subject><subject>Particle diffusion</subject><subject>Particle formation</subject><subject>Particle size distribution</subject><subject>Rate constants</subject><subject>Reactors</subject><subject>Secondary aerosols</subject><subject>Size distribution</subject><subject>Studies</subject><subject>Sulfuric acid</subject><subject>Sulphuric acid</subject><subject>Terpenes</subject><subject>Uptake</subject><subject>Volatility</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptktuKFDEQhhtRcF19AO8avRLsNZVDp_tyGTwMLAgerkNtOpnJ0JOMSZrd8UV8XdM9y-KA5CKpyld_UYeqeg3kSkDPP6A-NNA1QDljDSXQPakuoO1IIxnlT_95P69epLQjhAoC_KL6swo-5YjOO7-p_aRHg9kF_77WwQ_GpwcL_VDrrdm7Ah9r5-tw74blr7ZjuKujQZ1DTPWUZqHkfptmmGF3Oy3U3mCaotkbn9OihiaGFMZ673QMh-0xOY3FCoMZi8LL6pnFMZlXD_dl9fPTxx-rL83N18_r1fVNowWQXCoV2HLRWTnwTvYtaq57y4SWAqRsCWDfEiKslEgYCNIz7AhHQGQWiQF2Wa1PukPAnTpEt8d4VAGdWhwhbhTG7EpbVE-wZQY6SonmiPYWBs06FC1lrTZaFK03J62QslNJu2z0trTRG50V8FYCZQV6e4IOMfyaTMpqF6boS42Kkp4TTucZPlIbLJmdt6HMSJfua3UtBCUShJwTXv2HKmcogyqJjXXFfxbw7iygMNnc5w1OKan192_nLJzYMp6UorGP3QGi5p1TZecUdGrZOTXvHPsLawHKOw</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Hodshire, Anna L</creator><creator>Palm, Brett B</creator><creator>Alexander, M. Lizabeth</creator><creator>Bian, Qijing</creator><creator>Campuzano-Jost, Pedro</creator><creator>Cross, Eben S</creator><creator>Day, Douglas A</creator><creator>de Sá, Suzane S</creator><creator>Guenther, Alex B</creator><creator>Hansel, Armin</creator><creator>Hunter, James F</creator><creator>Jud, Werner</creator><creator>Karl, Thomas</creator><creator>Kim, Saewung</creator><creator>Kroll, Jesse H</creator><creator>Park, Jeong-Hoo</creator><creator>Peng, Zhe</creator><creator>Seco, Roger</creator><creator>Smith, James N</creator><creator>Jimenez, Jose L</creator><creator>Pierce, Jeffrey R</creator><general>Copernicus GmbH</general><general>European Geosciences Union</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4267-0435</orcidid><orcidid>https://orcid.org/0000-0002-6823-452X</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0002-4241-838X</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0002-1062-2394</orcidid><orcidid>https://orcid.org/0000-0003-4677-8224</orcidid><orcidid>https://orcid.org/0000-0002-1511-9026</orcidid><orcidid>https://orcid.org/0000-0002-6275-521X</orcidid><orcidid>https://orcid.org/0000-0001-6283-8288</orcidid><orcidid>https://orcid.org/0000-0003-2869-9426</orcidid><orcidid>https://orcid.org/0000-0001-5548-0812</orcidid><orcidid>https://orcid.org/0000-0002-2078-9956</orcidid><orcidid>https://orcid.org/0000-0002-5099-3659</orcidid><orcidid>https://orcid.org/0000-0003-3213-4233</orcidid><orcidid>https://orcid.org/0000000328699426</orcidid><orcidid>https://orcid.org/000000033930010X</orcidid><orcidid>https://orcid.org/0000000332134233</orcidid><orcidid>https://orcid.org/0000000210622394</orcidid><orcidid>https://orcid.org/0000000162031847</orcidid><orcidid>https://orcid.org/0000000215119026</orcidid><orcidid>https://orcid.org/0000000155480812</orcidid><orcidid>https://orcid.org/000000026823452X</orcidid><orcidid>https://orcid.org/0000000346778224</orcidid><orcidid>https://orcid.org/0000000342670435</orcidid><orcidid>https://orcid.org/0000000250993659</orcidid><orcidid>https://orcid.org/0000000220789956</orcidid><orcidid>https://orcid.org/000000024241838X</orcidid></search><sort><creationdate>20180828</creationdate><title>Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling</title><author>Hodshire, Anna L ; Palm, Brett B ; Alexander, M. Lizabeth ; Bian, Qijing ; Campuzano-Jost, Pedro ; Cross, Eben S ; Day, Douglas A ; de Sá, Suzane S ; Guenther, Alex B ; Hansel, Armin ; Hunter, James F ; Jud, Werner ; Karl, Thomas ; Kim, Saewung ; Kroll, Jesse H ; Park, Jeong-Hoo ; Peng, Zhe ; Seco, Roger ; Smith, James N ; Jimenez, Jose L ; Pierce, Jeffrey R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accommodation</topic><topic>Accommodation coefficient</topic><topic>Aerosols</topic><topic>Ageing</topic><topic>Aging</topic><topic>Atmospheric models</topic><topic>Atmospheric nucleation</topic><topic>Chemical evolution</topic><topic>Chemical properties</topic><topic>Computer simulation</topic><topic>Condensation</topic><topic>Condensation (Physics)</topic><topic>Constants</topic><topic>Diffusion</topic><topic>Dye dispersion</topic><topic>Dynamics</topic><topic>Environmental aspects</topic><topic>Equivalence</topic><topic>Evolution</topic><topic>Fragmentation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Isoprene</topic><topic>Meteorological research</topic><topic>Microphysics</topic><topic>Modelling</topic><topic>Monoterpenes</topic><topic>Natural history</topic><topic>Nucleation</topic><topic>Organic chemistry</topic><topic>Organic compounds</topic><topic>Oxidation</topic><topic>Oxidation-reduction reactions</topic><topic>Oxidizing agents</topic><topic>Particle diffusion</topic><topic>Particle formation</topic><topic>Particle size distribution</topic><topic>Rate constants</topic><topic>Reactors</topic><topic>Secondary aerosols</topic><topic>Size distribution</topic><topic>Studies</topic><topic>Sulfuric acid</topic><topic>Sulphuric acid</topic><topic>Terpenes</topic><topic>Uptake</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hodshire, Anna L</creatorcontrib><creatorcontrib>Palm, Brett B</creatorcontrib><creatorcontrib>Alexander, M. Lizabeth</creatorcontrib><creatorcontrib>Bian, Qijing</creatorcontrib><creatorcontrib>Campuzano-Jost, Pedro</creatorcontrib><creatorcontrib>Cross, Eben S</creatorcontrib><creatorcontrib>Day, Douglas A</creatorcontrib><creatorcontrib>de Sá, Suzane S</creatorcontrib><creatorcontrib>Guenther, Alex B</creatorcontrib><creatorcontrib>Hansel, Armin</creatorcontrib><creatorcontrib>Hunter, James F</creatorcontrib><creatorcontrib>Jud, Werner</creatorcontrib><creatorcontrib>Karl, Thomas</creatorcontrib><creatorcontrib>Kim, Saewung</creatorcontrib><creatorcontrib>Kroll, Jesse H</creatorcontrib><creatorcontrib>Park, Jeong-Hoo</creatorcontrib><creatorcontrib>Peng, Zhe</creatorcontrib><creatorcontrib>Seco, Roger</creatorcontrib><creatorcontrib>Smith, James N</creatorcontrib><creatorcontrib>Jimenez, Jose L</creatorcontrib><creatorcontrib>Pierce, Jeffrey R</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodshire, Anna L</au><au>Palm, Brett B</au><au>Alexander, M. Lizabeth</au><au>Bian, Qijing</au><au>Campuzano-Jost, Pedro</au><au>Cross, Eben S</au><au>Day, Douglas A</au><au>de Sá, Suzane S</au><au>Guenther, Alex B</au><au>Hansel, Armin</au><au>Hunter, James F</au><au>Jud, Werner</au><au>Karl, Thomas</au><au>Kim, Saewung</au><au>Kroll, Jesse H</au><au>Park, Jeong-Hoo</au><au>Peng, Zhe</au><au>Seco, Roger</au><au>Smith, James N</au><au>Jimenez, Jose L</au><au>Pierce, Jeffrey R</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2018-08-28</date><risdate>2018</risdate><volume>18</volume><issue>16</issue><spage>12433</spage><epage>12460</epage><pages>12433-12460</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size-distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09 and 0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-18-12433-2018</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-4267-0435</orcidid><orcidid>https://orcid.org/0000-0002-6823-452X</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0002-4241-838X</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0002-1062-2394</orcidid><orcidid>https://orcid.org/0000-0003-4677-8224</orcidid><orcidid>https://orcid.org/0000-0002-1511-9026</orcidid><orcidid>https://orcid.org/0000-0002-6275-521X</orcidid><orcidid>https://orcid.org/0000-0001-6283-8288</orcidid><orcidid>https://orcid.org/0000-0003-2869-9426</orcidid><orcidid>https://orcid.org/0000-0001-5548-0812</orcidid><orcidid>https://orcid.org/0000-0002-2078-9956</orcidid><orcidid>https://orcid.org/0000-0002-5099-3659</orcidid><orcidid>https://orcid.org/0000-0003-3213-4233</orcidid><orcidid>https://orcid.org/0000000328699426</orcidid><orcidid>https://orcid.org/000000033930010X</orcidid><orcidid>https://orcid.org/0000000332134233</orcidid><orcidid>https://orcid.org/0000000210622394</orcidid><orcidid>https://orcid.org/0000000162031847</orcidid><orcidid>https://orcid.org/0000000215119026</orcidid><orcidid>https://orcid.org/0000000155480812</orcidid><orcidid>https://orcid.org/000000026823452X</orcidid><orcidid>https://orcid.org/0000000346778224</orcidid><orcidid>https://orcid.org/0000000342670435</orcidid><orcidid>https://orcid.org/0000000250993659</orcidid><orcidid>https://orcid.org/0000000220789956</orcidid><orcidid>https://orcid.org/000000024241838X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2018-08, Vol.18 (16), p.12433-12460
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_90a63e18220c4aafb1dc38a56236cec5
source Publicly Available Content Database; Directory of Open Access Journals; Alma/SFX Local Collection
subjects Accommodation
Accommodation coefficient
Aerosols
Ageing
Aging
Atmospheric models
Atmospheric nucleation
Chemical evolution
Chemical properties
Computer simulation
Condensation
Condensation (Physics)
Constants
Diffusion
Dye dispersion
Dynamics
Environmental aspects
Equivalence
Evolution
Fragmentation
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Isoprene
Meteorological research
Microphysics
Modelling
Monoterpenes
Natural history
Nucleation
Organic chemistry
Organic compounds
Oxidation
Oxidation-reduction reactions
Oxidizing agents
Particle diffusion
Particle formation
Particle size distribution
Rate constants
Reactors
Secondary aerosols
Size distribution
Studies
Sulfuric acid
Sulphuric acid
Terpenes
Uptake
Volatility
title Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20nucleation,%20condensation,%20and%20chemistry%20in%20oxidation%20flow%20reactors%20using%20size-distribution%20measurements%20and%20aerosol%20microphysical%20modeling&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Hodshire,%20Anna%20L&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2018-08-28&rft.volume=18&rft.issue=16&rft.spage=12433&rft.epage=12460&rft.pages=12433-12460&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-18-12433-2018&rft_dat=%3Cgale_doaj_%3EA552071575%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-205a6458f7d48796ac4c9f35c75177601a96005f77a0315093a804a1aa3fa0e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2094042124&rft_id=info:pmid/&rft_galeid=A552071575&rfr_iscdi=true