Loading…

PHF5A promotes esophageal squamous cell carcinoma progression via stabilizing VEGFA

Esophageal squamous cell carcinoma (ESCC) is the main subtype of esophageal cancer. Current therapeutic effect is far from satisfaction. Hence, identifying susceptible genes and potential targets is necessary for therapy of ESCC patients. Plant homeodomain (PHD)-finger domain protein 5 A (PHF5A) exp...

Full description

Saved in:
Bibliographic Details
Published in:Biology direct 2024-03, Vol.19 (1), p.19-14, Article 19
Main Authors: Chang, Zhiwei, Jia, Yongxu, Gao, Ming, Song, Lijie, Zhang, Weijie, Zhao, Ruihua, Yu, Dandan, Liu, Xiaolei, Li, Jing, Qin, Yanru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Esophageal squamous cell carcinoma (ESCC) is the main subtype of esophageal cancer. Current therapeutic effect is far from satisfaction. Hence, identifying susceptible genes and potential targets is necessary for therapy of ESCC patients. Plant homeodomain (PHD)-finger domain protein 5 A (PHF5A) expression in ESCC tissues was examined by immunohistochemistry. RNA interference was used for in vitro loss-of-function experiments. In vivo assay was performed using xenograft mice model by subcutaneous injection. Besides, microarray assay and co-immunoprecipitation experiments were used to study the potential downstream molecules of PHF5A in ESCC. The molecular mechanism between PHF5A and vascular endothelial growth factor A (VEGFA) was explored by a series of ubiquitination related assays. We found that PHF5A was highly expressed in ESCC tissues compared to normal tissues and that was correlated with poor prognosis of ESCC. Loss-of-function experiments revealed that PHF5A silence remarkably inhibited cell proliferation, migration, and induced apoptosis as well as cell cycle arrest. Consistently, in vivo assay demonstrated that PHF5A deficiency was able to attenuate tumor growth. Furthermore, molecular studies showed that PHF5A silencing promoted VEGFA ubiquitination by interacting with MDM2, thereby regulating VEGFA protein expression. Subsequently, in rescue experiments, our data suggested that ESCC cell viability and migration promoted by PHF5A were dependent on intact VEGFA. Finally, PI3K/AKT signaling rescue was able to alleviate shPHF5A-mediated cell apoptosis and cell cycle arrest. PHF5A is a tumor promoter in ESCC, which is dependent on VEGFA and PI3K/AKT signaling. PHF5A might serve as a potential therapeutic target for ESCC treatment.
ISSN:1745-6150
1745-6150
DOI:10.1186/s13062-023-00440-3