Loading…
Adaptive Control Using Neural Networks and Approximate Models for Nonlinear Dynamic Systems
In this research, a comparative study of two recurrent neural networks, nonlinear autoregressive with exogenous input (NARX) neural network and nonlinear autoregressive moving average (NARMA-L2), and a feedforward neural network (FFNN) is performed for their ability to provide adaptive control of no...
Saved in:
Published in: | Modelling and simulation in engineering 2020, Vol.2020, p.1-13 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-282319c4837196f29ced6624f8de1b5d286a87be29ed5ba962f14120d2656dca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-282319c4837196f29ced6624f8de1b5d286a87be29ed5ba962f14120d2656dca3 |
container_end_page | 13 |
container_issue | |
container_start_page | 1 |
container_title | Modelling and simulation in engineering |
container_volume | 2020 |
creator | El Hamidi, Khadija Mjahed, Mostafa El Kari, Abdeljalil Ayad, Hassan |
description | In this research, a comparative study of two recurrent neural networks, nonlinear autoregressive with exogenous input (NARX) neural network and nonlinear autoregressive moving average (NARMA-L2), and a feedforward neural network (FFNN) is performed for their ability to provide adaptive control of nonlinear systems. Three dynamical nonlinear systems of different complexity are considered. The aim of this work is to make the output of the plant follow the desired reference trajectory. The problem becomes more challenging when the dynamics of the plants are assumed to be unknown, and to tackle this problem, a multilayer neural network-based approximate model is set up which will work in parallel to the plant and the control scheme. The network parameters are updated using the dynamic backpropagation (BP) algorithm. |
doi_str_mv | 10.1155/2020/8642915 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_90ce90247eb545bf89313dc8b3f9642e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_90ce90247eb545bf89313dc8b3f9642e</doaj_id><sourcerecordid>2440438843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-282319c4837196f29ced6624f8de1b5d286a87be29ed5ba962f14120d2656dca3</originalsourceid><addsrcrecordid>eNp9kTlPAzEQhVcIJBDQ8QMsUUKI77XLKFyROAqgorC89mwwbNbB3hDy79kQoKR6o9GnN8criiOCzwgRYkgxxUMlOdVEbBV7RKpyICQW27-10GS3OMw5VJjzUjAm8V7xPPJ23oUPQOPYdik26CmHdoruYJFs00u3jOktI9t6NJrPU_wMM9sBuo0emozqmNBdbJvQgk3ofNXaWXDoYZU7mOWDYqe2TYbDH90vni4vHsfXg5v7q8l4dDNwXJBuQBVlRDuuWEm0rKl24KWkvFYeSCU8VdKqsgKqwYvKaklrwgnFnkohvbNsv5hsfH20r2ae-g3TykQbzHcjpqmxqQuuAaOxA40pL6ESXFS10oww71TFat2_Dnqv441Xf-r7AnJnXuMitf36hnKOOVOKs5463VAuxZwT1H9TCTbrNMw6DfOTRo-fbPCX0Hq7DP_TX5UfiEE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440438843</pqid></control><display><type>article</type><title>Adaptive Control Using Neural Networks and Approximate Models for Nonlinear Dynamic Systems</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>El Hamidi, Khadija ; Mjahed, Mostafa ; El Kari, Abdeljalil ; Ayad, Hassan</creator><contributor>Calì, Michele ; Michele Calì</contributor><creatorcontrib>El Hamidi, Khadija ; Mjahed, Mostafa ; El Kari, Abdeljalil ; Ayad, Hassan ; Calì, Michele ; Michele Calì</creatorcontrib><description>In this research, a comparative study of two recurrent neural networks, nonlinear autoregressive with exogenous input (NARX) neural network and nonlinear autoregressive moving average (NARMA-L2), and a feedforward neural network (FFNN) is performed for their ability to provide adaptive control of nonlinear systems. Three dynamical nonlinear systems of different complexity are considered. The aim of this work is to make the output of the plant follow the desired reference trajectory. The problem becomes more challenging when the dynamics of the plants are assumed to be unknown, and to tackle this problem, a multilayer neural network-based approximate model is set up which will work in parallel to the plant and the control scheme. The network parameters are updated using the dynamic backpropagation (BP) algorithm.</description><identifier>ISSN: 1687-5591</identifier><identifier>EISSN: 1687-5605</identifier><identifier>DOI: 10.1155/2020/8642915</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Adaptive control ; Algorithms ; Artificial neural networks ; Autoregressive moving average ; Back propagation ; Back propagation networks ; Comparative studies ; Controllers ; Dynamical systems ; Mathematical models ; Multilayers ; Neural networks ; Neurons ; Nonlinear control ; Nonlinear dynamics ; Nonlinear systems ; Recurrent neural networks ; Stability</subject><ispartof>Modelling and simulation in engineering, 2020, Vol.2020, p.1-13</ispartof><rights>Copyright © 2020 Khadija El Hamidi et al.</rights><rights>Copyright © 2020 Khadija El Hamidi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-282319c4837196f29ced6624f8de1b5d286a87be29ed5ba962f14120d2656dca3</citedby><cites>FETCH-LOGICAL-c451t-282319c4837196f29ced6624f8de1b5d286a87be29ed5ba962f14120d2656dca3</cites><orcidid>0000-0001-7661-2095 ; 0000-0002-1322-0083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2440438843/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2440438843?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Calì, Michele</contributor><contributor>Michele Calì</contributor><creatorcontrib>El Hamidi, Khadija</creatorcontrib><creatorcontrib>Mjahed, Mostafa</creatorcontrib><creatorcontrib>El Kari, Abdeljalil</creatorcontrib><creatorcontrib>Ayad, Hassan</creatorcontrib><title>Adaptive Control Using Neural Networks and Approximate Models for Nonlinear Dynamic Systems</title><title>Modelling and simulation in engineering</title><description>In this research, a comparative study of two recurrent neural networks, nonlinear autoregressive with exogenous input (NARX) neural network and nonlinear autoregressive moving average (NARMA-L2), and a feedforward neural network (FFNN) is performed for their ability to provide adaptive control of nonlinear systems. Three dynamical nonlinear systems of different complexity are considered. The aim of this work is to make the output of the plant follow the desired reference trajectory. The problem becomes more challenging when the dynamics of the plants are assumed to be unknown, and to tackle this problem, a multilayer neural network-based approximate model is set up which will work in parallel to the plant and the control scheme. The network parameters are updated using the dynamic backpropagation (BP) algorithm.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Autoregressive moving average</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Comparative studies</subject><subject>Controllers</subject><subject>Dynamical systems</subject><subject>Mathematical models</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Recurrent neural networks</subject><subject>Stability</subject><issn>1687-5591</issn><issn>1687-5605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kTlPAzEQhVcIJBDQ8QMsUUKI77XLKFyROAqgorC89mwwbNbB3hDy79kQoKR6o9GnN8criiOCzwgRYkgxxUMlOdVEbBV7RKpyICQW27-10GS3OMw5VJjzUjAm8V7xPPJ23oUPQOPYdik26CmHdoruYJFs00u3jOktI9t6NJrPU_wMM9sBuo0emozqmNBdbJvQgk3ofNXaWXDoYZU7mOWDYqe2TYbDH90vni4vHsfXg5v7q8l4dDNwXJBuQBVlRDuuWEm0rKl24KWkvFYeSCU8VdKqsgKqwYvKaklrwgnFnkohvbNsv5hsfH20r2ae-g3TykQbzHcjpqmxqQuuAaOxA40pL6ESXFS10oww71TFat2_Dnqv441Xf-r7AnJnXuMitf36hnKOOVOKs5463VAuxZwT1H9TCTbrNMw6DfOTRo-fbPCX0Hq7DP_TX5UfiEE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>El Hamidi, Khadija</creator><creator>Mjahed, Mostafa</creator><creator>El Kari, Abdeljalil</creator><creator>Ayad, Hassan</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7661-2095</orcidid><orcidid>https://orcid.org/0000-0002-1322-0083</orcidid></search><sort><creationdate>2020</creationdate><title>Adaptive Control Using Neural Networks and Approximate Models for Nonlinear Dynamic Systems</title><author>El Hamidi, Khadija ; Mjahed, Mostafa ; El Kari, Abdeljalil ; Ayad, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-282319c4837196f29ced6624f8de1b5d286a87be29ed5ba962f14120d2656dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Autoregressive moving average</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Comparative studies</topic><topic>Controllers</topic><topic>Dynamical systems</topic><topic>Mathematical models</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Recurrent neural networks</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Hamidi, Khadija</creatorcontrib><creatorcontrib>Mjahed, Mostafa</creatorcontrib><creatorcontrib>El Kari, Abdeljalil</creatorcontrib><creatorcontrib>Ayad, Hassan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Modelling and simulation in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Hamidi, Khadija</au><au>Mjahed, Mostafa</au><au>El Kari, Abdeljalil</au><au>Ayad, Hassan</au><au>Calì, Michele</au><au>Michele Calì</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Control Using Neural Networks and Approximate Models for Nonlinear Dynamic Systems</atitle><jtitle>Modelling and simulation in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1687-5591</issn><eissn>1687-5605</eissn><abstract>In this research, a comparative study of two recurrent neural networks, nonlinear autoregressive with exogenous input (NARX) neural network and nonlinear autoregressive moving average (NARMA-L2), and a feedforward neural network (FFNN) is performed for their ability to provide adaptive control of nonlinear systems. Three dynamical nonlinear systems of different complexity are considered. The aim of this work is to make the output of the plant follow the desired reference trajectory. The problem becomes more challenging when the dynamics of the plants are assumed to be unknown, and to tackle this problem, a multilayer neural network-based approximate model is set up which will work in parallel to the plant and the control scheme. The network parameters are updated using the dynamic backpropagation (BP) algorithm.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2020/8642915</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7661-2095</orcidid><orcidid>https://orcid.org/0000-0002-1322-0083</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5591 |
ispartof | Modelling and simulation in engineering, 2020, Vol.2020, p.1-13 |
issn | 1687-5591 1687-5605 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_90ce90247eb545bf89313dc8b3f9642e |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Open Access: Wiley-Blackwell Open Access Journals |
subjects | Adaptive control Algorithms Artificial neural networks Autoregressive moving average Back propagation Back propagation networks Comparative studies Controllers Dynamical systems Mathematical models Multilayers Neural networks Neurons Nonlinear control Nonlinear dynamics Nonlinear systems Recurrent neural networks Stability |
title | Adaptive Control Using Neural Networks and Approximate Models for Nonlinear Dynamic Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Control%20Using%20Neural%20Networks%20and%20Approximate%20Models%20for%20Nonlinear%20Dynamic%20Systems&rft.jtitle=Modelling%20and%20simulation%20in%20engineering&rft.au=El%20Hamidi,%20Khadija&rft.date=2020&rft.volume=2020&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1687-5591&rft.eissn=1687-5605&rft_id=info:doi/10.1155/2020/8642915&rft_dat=%3Cproquest_doaj_%3E2440438843%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-282319c4837196f29ced6624f8de1b5d286a87be29ed5ba962f14120d2656dca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440438843&rft_id=info:pmid/&rfr_iscdi=true |