Loading…

Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer

Background Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detec...

Full description

Saved in:
Bibliographic Details
Published in:EJNMMI research 2018-05, Vol.8 (1), p.1-12, Article 41
Main Authors: Muehlematter, Urs J., Nagel, Hannes W., Becker, Anton, Mueller, Julian, Vokinger, Kerstin N., de Galiza Barbosa, Felipe, ter Voert, Edwin E. G. T., Veit-Haibach, Patrick, Burger, Irene A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13
cites cdi_FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13
container_end_page 12
container_issue 1
container_start_page 1
container_title EJNMMI research
container_volume 8
creator Muehlematter, Urs J.
Nagel, Hannes W.
Becker, Anton
Mueller, Julian
Vokinger, Kerstin N.
de Galiza Barbosa, Felipe
ter Voert, Edwin E. G. T.
Veit-Haibach, Patrick
Burger, Irene A.
description Background Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with 18 F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF 18 F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients. Results Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453–0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438–0.780). Conclusion TOF reconstruction for 18 F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.
doi_str_mv 10.1186/s13550-018-0390-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_90d517e149524674b9dae621b85c240f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_90d517e149524674b9dae621b85c240f</doaj_id><sourcerecordid>2049556904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13</originalsourceid><addsrcrecordid>eNp1ksFq3DAQhk1paUKaB-hN0EsvTiTbsqVLoYSkXUhpKSn0JsbyaFeLLW0kOZB7HzxyHNqmUB2k0cw_n8TwF8VbRs8YE-15ZDXntKRMlLSWtBQviuOKSVbm7efLv-Kj4jTGPc2LMy5r8bo4qqTgvKvEcfFrMx1AJ-INSXbC0pvSjHa7S-Tb5Q3xjtzO4JI1VkOy-QpazwH0PQE3kBHjkhswoX6sWkeineYxgUM_R8LEVal3frQOF975l-8bYnwgh-BjgoREg9MY3hSvDIwRT5_Ok-LH1eXNxefy-uunzcXH61I3TZ1K6IYOtKxlD4ZpYQyvtJEwUBy6BlnHucGeQqN7jbRnFNq6qaTmrK8FtMjqk2KzcgcPe3UIdoJwrzxY9ZjwYasgJKtHVJIOnHXIGsmrpu2aXg6AbcV6wXXVUJNZH1bWYe4nHDS6FGB8Bn1ecXantv5OcSkY43UGvH8CBH87Y0xqslHjOK6zUxXNb_NW0iZL3_0j3fs5uDyqRdUJLgQTWcVWlc7TjQHN788wqhbLqNUyKltGLZZRS0-19sSsdVsMf8j_b3oAiPjDpg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047858818</pqid></control><display><type>article</type><title>Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer</title><source>PubMed Central Free</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>ProQuest - Publicly Available Content Database</source><creator>Muehlematter, Urs J. ; Nagel, Hannes W. ; Becker, Anton ; Mueller, Julian ; Vokinger, Kerstin N. ; de Galiza Barbosa, Felipe ; ter Voert, Edwin E. G. T. ; Veit-Haibach, Patrick ; Burger, Irene A.</creator><creatorcontrib>Muehlematter, Urs J. ; Nagel, Hannes W. ; Becker, Anton ; Mueller, Julian ; Vokinger, Kerstin N. ; de Galiza Barbosa, Felipe ; ter Voert, Edwin E. G. T. ; Veit-Haibach, Patrick ; Burger, Irene A.</creatorcontrib><description>Background Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with 18 F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF 18 F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients. Results Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453–0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438–0.780). Conclusion TOF reconstruction for 18 F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.</description><identifier>ISSN: 2191-219X</identifier><identifier>EISSN: 2191-219X</identifier><identifier>DOI: 10.1186/s13550-018-0390-8</identifier><identifier>PMID: 29855728</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Attenuation ; Attenuation correction ; Cardiac Imaging ; Choline ; Confidence intervals ; Emission analysis ; Fluorine isotopes ; Imaging ; Lesions ; Lymph ; Lymphatic system ; Magnetic resonance imaging ; Medicine ; Medicine &amp; Public Health ; Metastasis ; NMR ; Nuclear magnetic resonance ; Nuclear Medicine ; Oncology ; Original Research ; Orthopedics ; Patients ; PET/MRI ; Positron emission ; Prostate cancer ; Radiology ; Readers ; Time-of-flight ; Tomography</subject><ispartof>EJNMMI research, 2018-05, Vol.8 (1), p.1-12, Article 41</ispartof><rights>The Author(s). 2018. corrected publication August/2018</rights><rights>EJNMMI Research is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2018, corrected publication August/2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13</citedby><cites>FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2047858818/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2047858818?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Muehlematter, Urs J.</creatorcontrib><creatorcontrib>Nagel, Hannes W.</creatorcontrib><creatorcontrib>Becker, Anton</creatorcontrib><creatorcontrib>Mueller, Julian</creatorcontrib><creatorcontrib>Vokinger, Kerstin N.</creatorcontrib><creatorcontrib>de Galiza Barbosa, Felipe</creatorcontrib><creatorcontrib>ter Voert, Edwin E. G. T.</creatorcontrib><creatorcontrib>Veit-Haibach, Patrick</creatorcontrib><creatorcontrib>Burger, Irene A.</creatorcontrib><title>Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer</title><title>EJNMMI research</title><addtitle>EJNMMI Res</addtitle><description>Background Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with 18 F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF 18 F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients. Results Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453–0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438–0.780). Conclusion TOF reconstruction for 18 F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.</description><subject>Attenuation</subject><subject>Attenuation correction</subject><subject>Cardiac Imaging</subject><subject>Choline</subject><subject>Confidence intervals</subject><subject>Emission analysis</subject><subject>Fluorine isotopes</subject><subject>Imaging</subject><subject>Lesions</subject><subject>Lymph</subject><subject>Lymphatic system</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metastasis</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Original Research</subject><subject>Orthopedics</subject><subject>Patients</subject><subject>PET/MRI</subject><subject>Positron emission</subject><subject>Prostate cancer</subject><subject>Radiology</subject><subject>Readers</subject><subject>Time-of-flight</subject><subject>Tomography</subject><issn>2191-219X</issn><issn>2191-219X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1ksFq3DAQhk1paUKaB-hN0EsvTiTbsqVLoYSkXUhpKSn0JsbyaFeLLW0kOZB7HzxyHNqmUB2k0cw_n8TwF8VbRs8YE-15ZDXntKRMlLSWtBQviuOKSVbm7efLv-Kj4jTGPc2LMy5r8bo4qqTgvKvEcfFrMx1AJ-INSXbC0pvSjHa7S-Tb5Q3xjtzO4JI1VkOy-QpazwH0PQE3kBHjkhswoX6sWkeineYxgUM_R8LEVal3frQOF975l-8bYnwgh-BjgoREg9MY3hSvDIwRT5_Ok-LH1eXNxefy-uunzcXH61I3TZ1K6IYOtKxlD4ZpYQyvtJEwUBy6BlnHucGeQqN7jbRnFNq6qaTmrK8FtMjqk2KzcgcPe3UIdoJwrzxY9ZjwYasgJKtHVJIOnHXIGsmrpu2aXg6AbcV6wXXVUJNZH1bWYe4nHDS6FGB8Bn1ecXantv5OcSkY43UGvH8CBH87Y0xqslHjOK6zUxXNb_NW0iZL3_0j3fs5uDyqRdUJLgQTWcVWlc7TjQHN788wqhbLqNUyKltGLZZRS0-19sSsdVsMf8j_b3oAiPjDpg</recordid><startdate>20180531</startdate><enddate>20180531</enddate><creator>Muehlematter, Urs J.</creator><creator>Nagel, Hannes W.</creator><creator>Becker, Anton</creator><creator>Mueller, Julian</creator><creator>Vokinger, Kerstin N.</creator><creator>de Galiza Barbosa, Felipe</creator><creator>ter Voert, Edwin E. G. T.</creator><creator>Veit-Haibach, Patrick</creator><creator>Burger, Irene A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180531</creationdate><title>Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer</title><author>Muehlematter, Urs J. ; Nagel, Hannes W. ; Becker, Anton ; Mueller, Julian ; Vokinger, Kerstin N. ; de Galiza Barbosa, Felipe ; ter Voert, Edwin E. G. T. ; Veit-Haibach, Patrick ; Burger, Irene A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attenuation</topic><topic>Attenuation correction</topic><topic>Cardiac Imaging</topic><topic>Choline</topic><topic>Confidence intervals</topic><topic>Emission analysis</topic><topic>Fluorine isotopes</topic><topic>Imaging</topic><topic>Lesions</topic><topic>Lymph</topic><topic>Lymphatic system</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metastasis</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Original Research</topic><topic>Orthopedics</topic><topic>Patients</topic><topic>PET/MRI</topic><topic>Positron emission</topic><topic>Prostate cancer</topic><topic>Radiology</topic><topic>Readers</topic><topic>Time-of-flight</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muehlematter, Urs J.</creatorcontrib><creatorcontrib>Nagel, Hannes W.</creatorcontrib><creatorcontrib>Becker, Anton</creatorcontrib><creatorcontrib>Mueller, Julian</creatorcontrib><creatorcontrib>Vokinger, Kerstin N.</creatorcontrib><creatorcontrib>de Galiza Barbosa, Felipe</creatorcontrib><creatorcontrib>ter Voert, Edwin E. G. T.</creatorcontrib><creatorcontrib>Veit-Haibach, Patrick</creatorcontrib><creatorcontrib>Burger, Irene A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EJNMMI research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muehlematter, Urs J.</au><au>Nagel, Hannes W.</au><au>Becker, Anton</au><au>Mueller, Julian</au><au>Vokinger, Kerstin N.</au><au>de Galiza Barbosa, Felipe</au><au>ter Voert, Edwin E. G. T.</au><au>Veit-Haibach, Patrick</au><au>Burger, Irene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer</atitle><jtitle>EJNMMI research</jtitle><stitle>EJNMMI Res</stitle><date>2018-05-31</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>41</artnum><issn>2191-219X</issn><eissn>2191-219X</eissn><abstract>Background Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with 18 F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF 18 F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients. Results Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453–0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438–0.780). Conclusion TOF reconstruction for 18 F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29855728</pmid><doi>10.1186/s13550-018-0390-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2191-219X
ispartof EJNMMI research, 2018-05, Vol.8 (1), p.1-12, Article 41
issn 2191-219X
2191-219X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_90d517e149524674b9dae621b85c240f
source PubMed Central Free; Springer Nature - SpringerLink Journals - Fully Open Access ; ProQuest - Publicly Available Content Database
subjects Attenuation
Attenuation correction
Cardiac Imaging
Choline
Confidence intervals
Emission analysis
Fluorine isotopes
Imaging
Lesions
Lymph
Lymphatic system
Magnetic resonance imaging
Medicine
Medicine & Public Health
Metastasis
NMR
Nuclear magnetic resonance
Nuclear Medicine
Oncology
Original Research
Orthopedics
Patients
PET/MRI
Positron emission
Prostate cancer
Radiology
Readers
Time-of-flight
Tomography
title Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20time-of-flight%20PET%20on%20quantification%20accuracy%20and%20lesion%20detection%20in%20simultaneous%2018F-choline%20PET/MRI%20for%20prostate%20cancer&rft.jtitle=EJNMMI%20research&rft.au=Muehlematter,%20Urs%20J.&rft.date=2018-05-31&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=41&rft.issn=2191-219X&rft.eissn=2191-219X&rft_id=info:doi/10.1186/s13550-018-0390-8&rft_dat=%3Cproquest_doaj_%3E2049556904%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2047858818&rft_id=info:pmid/29855728&rfr_iscdi=true