Loading…
Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer
Background Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detec...
Saved in:
Published in: | EJNMMI research 2018-05, Vol.8 (1), p.1-12, Article 41 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 1 |
container_title | EJNMMI research |
container_volume | 8 |
creator | Muehlematter, Urs J. Nagel, Hannes W. Becker, Anton Mueller, Julian Vokinger, Kerstin N. de Galiza Barbosa, Felipe ter Voert, Edwin E. G. T. Veit-Haibach, Patrick Burger, Irene A. |
description | Background
Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with
18
F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF
18
F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients.
Results
Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453–0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438–0.780).
Conclusion
TOF reconstruction for
18
F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients. |
doi_str_mv | 10.1186/s13550-018-0390-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_90d517e149524674b9dae621b85c240f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_90d517e149524674b9dae621b85c240f</doaj_id><sourcerecordid>2049556904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13</originalsourceid><addsrcrecordid>eNp1ksFq3DAQhk1paUKaB-hN0EsvTiTbsqVLoYSkXUhpKSn0JsbyaFeLLW0kOZB7HzxyHNqmUB2k0cw_n8TwF8VbRs8YE-15ZDXntKRMlLSWtBQviuOKSVbm7efLv-Kj4jTGPc2LMy5r8bo4qqTgvKvEcfFrMx1AJ-INSXbC0pvSjHa7S-Tb5Q3xjtzO4JI1VkOy-QpazwH0PQE3kBHjkhswoX6sWkeineYxgUM_R8LEVal3frQOF975l-8bYnwgh-BjgoREg9MY3hSvDIwRT5_Ok-LH1eXNxefy-uunzcXH61I3TZ1K6IYOtKxlD4ZpYQyvtJEwUBy6BlnHucGeQqN7jbRnFNq6qaTmrK8FtMjqk2KzcgcPe3UIdoJwrzxY9ZjwYasgJKtHVJIOnHXIGsmrpu2aXg6AbcV6wXXVUJNZH1bWYe4nHDS6FGB8Bn1ecXantv5OcSkY43UGvH8CBH87Y0xqslHjOK6zUxXNb_NW0iZL3_0j3fs5uDyqRdUJLgQTWcVWlc7TjQHN788wqhbLqNUyKltGLZZRS0-19sSsdVsMf8j_b3oAiPjDpg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047858818</pqid></control><display><type>article</type><title>Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer</title><source>PubMed Central Free</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>ProQuest - Publicly Available Content Database</source><creator>Muehlematter, Urs J. ; Nagel, Hannes W. ; Becker, Anton ; Mueller, Julian ; Vokinger, Kerstin N. ; de Galiza Barbosa, Felipe ; ter Voert, Edwin E. G. T. ; Veit-Haibach, Patrick ; Burger, Irene A.</creator><creatorcontrib>Muehlematter, Urs J. ; Nagel, Hannes W. ; Becker, Anton ; Mueller, Julian ; Vokinger, Kerstin N. ; de Galiza Barbosa, Felipe ; ter Voert, Edwin E. G. T. ; Veit-Haibach, Patrick ; Burger, Irene A.</creatorcontrib><description>Background
Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with
18
F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF
18
F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients.
Results
Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453–0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438–0.780).
Conclusion
TOF reconstruction for
18
F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.</description><identifier>ISSN: 2191-219X</identifier><identifier>EISSN: 2191-219X</identifier><identifier>DOI: 10.1186/s13550-018-0390-8</identifier><identifier>PMID: 29855728</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Attenuation ; Attenuation correction ; Cardiac Imaging ; Choline ; Confidence intervals ; Emission analysis ; Fluorine isotopes ; Imaging ; Lesions ; Lymph ; Lymphatic system ; Magnetic resonance imaging ; Medicine ; Medicine & Public Health ; Metastasis ; NMR ; Nuclear magnetic resonance ; Nuclear Medicine ; Oncology ; Original Research ; Orthopedics ; Patients ; PET/MRI ; Positron emission ; Prostate cancer ; Radiology ; Readers ; Time-of-flight ; Tomography</subject><ispartof>EJNMMI research, 2018-05, Vol.8 (1), p.1-12, Article 41</ispartof><rights>The Author(s). 2018. corrected publication August/2018</rights><rights>EJNMMI Research is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2018, corrected publication August/2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13</citedby><cites>FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2047858818/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2047858818?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Muehlematter, Urs J.</creatorcontrib><creatorcontrib>Nagel, Hannes W.</creatorcontrib><creatorcontrib>Becker, Anton</creatorcontrib><creatorcontrib>Mueller, Julian</creatorcontrib><creatorcontrib>Vokinger, Kerstin N.</creatorcontrib><creatorcontrib>de Galiza Barbosa, Felipe</creatorcontrib><creatorcontrib>ter Voert, Edwin E. G. T.</creatorcontrib><creatorcontrib>Veit-Haibach, Patrick</creatorcontrib><creatorcontrib>Burger, Irene A.</creatorcontrib><title>Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer</title><title>EJNMMI research</title><addtitle>EJNMMI Res</addtitle><description>Background
Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with
18
F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF
18
F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients.
Results
Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453–0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438–0.780).
Conclusion
TOF reconstruction for
18
F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.</description><subject>Attenuation</subject><subject>Attenuation correction</subject><subject>Cardiac Imaging</subject><subject>Choline</subject><subject>Confidence intervals</subject><subject>Emission analysis</subject><subject>Fluorine isotopes</subject><subject>Imaging</subject><subject>Lesions</subject><subject>Lymph</subject><subject>Lymphatic system</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metastasis</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Original Research</subject><subject>Orthopedics</subject><subject>Patients</subject><subject>PET/MRI</subject><subject>Positron emission</subject><subject>Prostate cancer</subject><subject>Radiology</subject><subject>Readers</subject><subject>Time-of-flight</subject><subject>Tomography</subject><issn>2191-219X</issn><issn>2191-219X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1ksFq3DAQhk1paUKaB-hN0EsvTiTbsqVLoYSkXUhpKSn0JsbyaFeLLW0kOZB7HzxyHNqmUB2k0cw_n8TwF8VbRs8YE-15ZDXntKRMlLSWtBQviuOKSVbm7efLv-Kj4jTGPc2LMy5r8bo4qqTgvKvEcfFrMx1AJ-INSXbC0pvSjHa7S-Tb5Q3xjtzO4JI1VkOy-QpazwH0PQE3kBHjkhswoX6sWkeineYxgUM_R8LEVal3frQOF975l-8bYnwgh-BjgoREg9MY3hSvDIwRT5_Ok-LH1eXNxefy-uunzcXH61I3TZ1K6IYOtKxlD4ZpYQyvtJEwUBy6BlnHucGeQqN7jbRnFNq6qaTmrK8FtMjqk2KzcgcPe3UIdoJwrzxY9ZjwYasgJKtHVJIOnHXIGsmrpu2aXg6AbcV6wXXVUJNZH1bWYe4nHDS6FGB8Bn1ecXantv5OcSkY43UGvH8CBH87Y0xqslHjOK6zUxXNb_NW0iZL3_0j3fs5uDyqRdUJLgQTWcVWlc7TjQHN788wqhbLqNUyKltGLZZRS0-19sSsdVsMf8j_b3oAiPjDpg</recordid><startdate>20180531</startdate><enddate>20180531</enddate><creator>Muehlematter, Urs J.</creator><creator>Nagel, Hannes W.</creator><creator>Becker, Anton</creator><creator>Mueller, Julian</creator><creator>Vokinger, Kerstin N.</creator><creator>de Galiza Barbosa, Felipe</creator><creator>ter Voert, Edwin E. G. T.</creator><creator>Veit-Haibach, Patrick</creator><creator>Burger, Irene A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180531</creationdate><title>Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer</title><author>Muehlematter, Urs J. ; Nagel, Hannes W. ; Becker, Anton ; Mueller, Julian ; Vokinger, Kerstin N. ; de Galiza Barbosa, Felipe ; ter Voert, Edwin E. G. T. ; Veit-Haibach, Patrick ; Burger, Irene A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attenuation</topic><topic>Attenuation correction</topic><topic>Cardiac Imaging</topic><topic>Choline</topic><topic>Confidence intervals</topic><topic>Emission analysis</topic><topic>Fluorine isotopes</topic><topic>Imaging</topic><topic>Lesions</topic><topic>Lymph</topic><topic>Lymphatic system</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metastasis</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Original Research</topic><topic>Orthopedics</topic><topic>Patients</topic><topic>PET/MRI</topic><topic>Positron emission</topic><topic>Prostate cancer</topic><topic>Radiology</topic><topic>Readers</topic><topic>Time-of-flight</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muehlematter, Urs J.</creatorcontrib><creatorcontrib>Nagel, Hannes W.</creatorcontrib><creatorcontrib>Becker, Anton</creatorcontrib><creatorcontrib>Mueller, Julian</creatorcontrib><creatorcontrib>Vokinger, Kerstin N.</creatorcontrib><creatorcontrib>de Galiza Barbosa, Felipe</creatorcontrib><creatorcontrib>ter Voert, Edwin E. G. T.</creatorcontrib><creatorcontrib>Veit-Haibach, Patrick</creatorcontrib><creatorcontrib>Burger, Irene A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EJNMMI research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muehlematter, Urs J.</au><au>Nagel, Hannes W.</au><au>Becker, Anton</au><au>Mueller, Julian</au><au>Vokinger, Kerstin N.</au><au>de Galiza Barbosa, Felipe</au><au>ter Voert, Edwin E. G. T.</au><au>Veit-Haibach, Patrick</au><au>Burger, Irene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer</atitle><jtitle>EJNMMI research</jtitle><stitle>EJNMMI Res</stitle><date>2018-05-31</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>41</artnum><issn>2191-219X</issn><eissn>2191-219X</eissn><abstract>Background
Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with
18
F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF
18
F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients.
Results
Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453–0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438–0.780).
Conclusion
TOF reconstruction for
18
F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29855728</pmid><doi>10.1186/s13550-018-0390-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2191-219X |
ispartof | EJNMMI research, 2018-05, Vol.8 (1), p.1-12, Article 41 |
issn | 2191-219X 2191-219X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_90d517e149524674b9dae621b85c240f |
source | PubMed Central Free; Springer Nature - SpringerLink Journals - Fully Open Access ; ProQuest - Publicly Available Content Database |
subjects | Attenuation Attenuation correction Cardiac Imaging Choline Confidence intervals Emission analysis Fluorine isotopes Imaging Lesions Lymph Lymphatic system Magnetic resonance imaging Medicine Medicine & Public Health Metastasis NMR Nuclear magnetic resonance Nuclear Medicine Oncology Original Research Orthopedics Patients PET/MRI Positron emission Prostate cancer Radiology Readers Time-of-flight Tomography |
title | Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20time-of-flight%20PET%20on%20quantification%20accuracy%20and%20lesion%20detection%20in%20simultaneous%2018F-choline%20PET/MRI%20for%20prostate%20cancer&rft.jtitle=EJNMMI%20research&rft.au=Muehlematter,%20Urs%20J.&rft.date=2018-05-31&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=41&rft.issn=2191-219X&rft.eissn=2191-219X&rft_id=info:doi/10.1186/s13550-018-0390-8&rft_dat=%3Cproquest_doaj_%3E2049556904%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-a7d7ac939baf1c8ff52cf9ad0ed74e1755feb0a4cbce0b10a63429c51b38a6e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2047858818&rft_id=info:pmid/29855728&rfr_iscdi=true |