Loading…

Pyromeconic acid-enriched Erigeron annuus water extract as a cosmetic ingredient for itch relief and anti-inflammatory activity

Erigeron annuus (EA), traditionally used to treat disorders such as diabetes and enteritis, contains a variety of chemicals, including caffeic acid, flavonoids, and coumarins, providing antifungal and antioxidative benefits. However, the ingredients of each part of the EA vary widely, and there are...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-02, Vol.14 (1), p.4698-4698, Article 4698
Main Authors: Kang, Minkyoung, Kang, Minji, Kim, Tae Hee, Jeong, Seong Un, Oh, Sangnam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Erigeron annuus (EA), traditionally used to treat disorders such as diabetes and enteritis, contains a variety of chemicals, including caffeic acid, flavonoids, and coumarins, providing antifungal and antioxidative benefits. However, the ingredients of each part of the EA vary widely, and there are few reports on the functionality of water extracts in skin inflammation and barrier protection. We assessed the therapeutic properties of the extract of EA without roots (EEA) and its primary ingredient, pyromeconic acid (PA), focusing on their antihistamine, anti-inflammatory, and antioxidative capabilities using HMC-1(human mast cells) and human keratinocytes (HaCaT cells). Our findings revealed that histamine secretion, which is closely related to itching, was notably reduced in HMC-1 cells following pretreatment with EEA (0.1% and 0.2%) and PA (corresponding concentration, 4.7 of 9.4 µg/mL). Similarly, they led to a marked decrease in the levels of pro-inflammatory cytokines, including IL-1β, IL-8, IL-6, and IFN-γ. Furthermore, EA and PA enhanced antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), reduced malondialdehyde (MDA) production, and showed reactive oxygen species (ROS) scavenging activity in HaCaT cells. Moreover, at the molecular level, elevated levels of the pro-inflammatory cytokines IL-1β, IL-6, TARC, and MDC induced by TNF-α/IFN-γ in HaCaT cells were mitigated by treatment with EEA and PA. We also revealed the protective effects of EEA and PA against SDS-induced skin barrier dysfunction in HaCaT cells by enhancing the expression of barrier-related proteins. Using NanoString technology, a comprehensive analysis of gene expression changes indicated significant modulation of autoimmune and inflammatory genes by EEA and PA. In summary, this study suggests that EEA and the corresponding concentration of PA as an active ingredient have functional cosmetic applications to alleviate itching and improve skin health.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-55365-2