Loading…
Agarwood Alcohol Extract Ameliorates Isoproterenol-Induced Myocardial Ischemia by Inhibiting Oxidation and Apoptosis
Agarwood is a traditional medicine used for treating some diseases, including painful and ischemic diseases. This study was carried out to investigate the potential cardioprotective effect of the whole-tree agarwood-inducing technique-produced agarwood alcohol extract (WTAAE) on isoproterenol- (ISO-...
Saved in:
Published in: | Cardiology research and practice 2020, Vol.2020 (2020), p.1-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Agarwood is a traditional medicine used for treating some diseases, including painful and ischemic diseases. This study was carried out to investigate the potential cardioprotective effect of the whole-tree agarwood-inducing technique-produced agarwood alcohol extract (WTAAE) on isoproterenol- (ISO-) induced myocardial ischemia (MI) in rats and explore the underlying molecular mechanisms. Compared to the MI group, WTAAE pretreatment significantly improved ST wave abnormal-elevation, mitigated myocardial histological damage; decreased creatinine kinase (CK), lactate dehydrogenase (LDH), alanine transaminase (ALT), and aspartate transaminase (AST) levels; reduced hydrogen peroxide (H2O2) and lipid peroxide (LPO) production; and increased total antioxidant capacity (T-AOC) and catalase (CAT) activities. Moreover, agarwood alcohol extracts (AAEs) markedly enhanced the mRNA levels of Nrf2-ARE pathway, and Bcl-2 reduced the apoptotic Bax family mRNA expressions. In addition, the effect of WTAAE was greater than that of wild agarwood alcohol extract (WAAE) and burning-chisel-drilling agarwood alcohol extract (FBAAE). All of these data indicate that WTAAE exerted the protective effects of MI, and its mechanism was associated with upregulating Nrf2-ARE and suppressing Bcl-2 pathways. |
---|---|
ISSN: | 2090-8016 2090-0597 2090-0597 |
DOI: | 10.1155/2020/3640815 |