Loading…
Comparative Effects of Metamizole (Dipyrone) and Naproxen on Renal Function and Prostacyclin Synthesis in Salt-Depleted Healthy Subjects - A Randomized Controlled Parallel Group Study
Aim: The objective was to investigate the effect of metamizole on renal function in healthy, salt-depleted volunteers. In addition, the pharmacokinetics of the four major metamizole metabolites were assessed and correlated with the pharmacodynamic effect using urinary excretion of the prostacyclin m...
Saved in:
Published in: | Frontiers in pharmacology 2021-09, Vol.12, p.620635-620635 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aim:
The objective was to investigate the effect of metamizole on renal function in healthy, salt-depleted volunteers. In addition, the pharmacokinetics of the four major metamizole metabolites were assessed and correlated with the pharmacodynamic effect using urinary excretion of the prostacyclin metabolite 6-keto-prostaglandin F1α.
Methods:
Fifteen healthy male volunteers were studied in an open-label randomized controlled parallel group study. Eight subjects received oral metamizole 1,000 mg three times daily and seven subjects naproxen 500 mg twice daily for 7 days. All subjects were on a low sodium diet (50 mmol sodium/day) starting 1 week prior to dosing until the end of the study. Glomerular filtration rate was measured using inulin clearance. Urinary excretion of sodium, potassium, creatinine, 6-keto-prostaglandin F1α, and pharmacokinetic parameters of naproxen and metamizole metabolites were assessed after the first and after repeated dosing.
Results:
In moderately sodium-depleted healthy subjects, single or multiple dose metamizole or naproxen did not significantly affect inulin and creatinine clearance or sodium excretion. Both drugs reduced renal 6-keto-prostaglandin F1α excretion after single and repeated dosing. The effect started 2 h after intake, persisted for the entire dosing period and correlated with the concentration-profile of naproxen and the active metamizole metabolite 4-methylaminoantipyrine (4-MAA). PKPD modelling indicated less potent COX-inhibition by 4-MAA (EC
50
0.69 ± 0.27 µM) compared with naproxen (EC
50
0.034 ± 0.033 µM).
Conclusions:
Short term treatment with metamizole or naproxen has no significant effect on renal function in moderately sodium depleted healthy subjects. At clinically relevant doses, 4-MAA and naproxen both inhibit COX-mediated renal prostacyclin synthesis. |
---|---|
ISSN: | 1663-9812 1663-9812 |
DOI: | 10.3389/fphar.2021.620635 |