Loading…

Evaluation of NaCl and KCl Salting Effects on Technological Properties of Pre- and Post-Rigor Chicken Breasts at Various Ionic Strengths

The objective of this study is to evaluate the effects of NaCl and KCl salting on technological properties of pre- and post-rigor chicken breasts at various ionic strengths. The following factorial arrangement was used: 2 salt types (NaCl and KCl) × 2 rigor statuses (pre- and post-rigor) × 4 ionic s...

Full description

Saved in:
Bibliographic Details
Published in:Foods 2020-06, Vol.9 (6), p.721
Main Authors: Song, Dong-Heon, Ham, Youn-Kyung, Noh, Sin-Woo, Chin, Koo Bok, Kim, Hyun-Wook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study is to evaluate the effects of NaCl and KCl salting on technological properties of pre- and post-rigor chicken breasts at various ionic strengths. The following factorial arrangement was used: 2 salt types (NaCl and KCl) × 2 rigor statuses (pre- and post-rigor) × 4 ionic strengths (0.086, 0.171, 0.257, and 0.342). Hot-boned and ground chicken breasts were salted within 30 min postmortem after slaughter (pre-rigor salting) or 24 h postmortem (post-rigor salting) with varying concentrations of NaCl (0.50%, 1.00%, 1.50%, and 2.00%) or KCl (0.64%, 1.28%, 1.91%, and 2.55%) corresponding to the four ionic strengths. KCl caused higher pH value in salted chicken breasts than NaCl (p < 0.05). However, KCl decreased total and myofibrillar protein solubilities in post-rigor salted chicken breasts compared to NaCl (p < 0.05), but those were similar to pre-rigor chicken breasts, regardless of the salt type (p > 0.05). Different salt types had no significant impact on cooking loss and textural properties. This study shows that NaCl and KCl had similar effects on technological properties at the same ionic strength (within 0.342), but the use of KCl may have the possibility to decrease protein solubility, depending on rigor status of raw meat at the different salting time.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods9060721