Loading…
Nitric Oxide Linked to mGluR5 Upregulates BDNF Synthesis by Activating MMP2 in the Caudate and Putamen after Challenge Exposure to Nicotine in Rats
Nitric oxide (NO) linked to glutamate receptors in the caudate and putamen (CPu) regulates neuroadaptation after drug exposure. Matrix-metalloproteinase (MMP), a Ca2+-dependent zinc-containing endopeptidase, increases mature brain-derived neurotrophic factor (BDNF) synthesis after drug exposure in t...
Saved in:
Published in: | International journal of molecular sciences 2022-09, Vol.23 (18), p.10950 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nitric oxide (NO) linked to glutamate receptors in the caudate and putamen (CPu) regulates neuroadaptation after drug exposure. Matrix-metalloproteinase (MMP), a Ca2+-dependent zinc-containing endopeptidase, increases mature brain-derived neurotrophic factor (BDNF) synthesis after drug exposure in the brain. The present study determined that NO synthesis linked to metabotropic glutamate receptor subtype 5 (mGluR5) stimulation after challenge exposure to nicotine activates MMP, which upregulates BDNF synthesis in the CPu. Subcutaneous injection of challenge nicotine (1.0 mg/kg) after repeated injections of nicotine (1.0 mg/kg/day) for 14 days and 7 days of nicotine withdrawal increased MMP2 activity and BDNF expression in the CPu of rats. These increases were prevented by the bilateral intra-CPu infusion of the mGluR5 antagonist, MPEP (0.1 nmol/side), the IP3 receptor antagonist, xestospongin C (0.004 nmol/side) or the neuronal nitric oxide synthase (nNOS) and NO inhibitor, Nω-propyl (0.1 nmol/side) prior to the challenge nicotine. Furthermore, bilateral intra-CPu infusion of the MMP2 inhibitor, OA-Hy (1 nmol/side) prevented the challenge nicotine-induced increase in the expression of BDNF. These findings suggest that elevation of NO synthesis linked to mGluR5 potentiates BDNF synthesis via activation of MMP2 after challenge exposure to nicotine in the CPu of rats. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms231810950 |