Loading…

In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation

The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector prote...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2019-07, Vol.8
Main Authors: Gillingham, Alison K, Bertram, Jessie, Begum, Farida, Munro, Sean
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53
cites cdi_FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 8
creator Gillingham, Alison K
Bertram, Jessie
Begum, Farida
Munro, Sean
description The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.
doi_str_mv 10.7554/elife.45916
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_91446bfa1e7545609e545778781bfb5f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A596814332</galeid><doaj_id>oai_doaj_org_article_91446bfa1e7545609e545778781bfb5f</doaj_id><sourcerecordid>A596814332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53</originalsourceid><addsrcrecordid>eNptkt2LEzEUxQdR3GXdJ99lwBdFWpPJ18yLsCy6FgqKruBbyCQ3bco0qUmmbP3rzbbr0orJQ8K9v3tCDqeqXmI0FYzR9zA4C1PKOsyfVOcNYmiCWvrz6dH9rLpMaYXKErRtcfe8OiO46SjvmvNqOfP11m1D7Qz47KzTKrvg62Drm9uvKkHtfIaodA4x1f2uXrsc9DJ4E50a6ghD0Gpwvw9Typt6E8OdK9Su7l3Izu-Gfe9F9cyqIcHlw3lR_fj08fb682T-5WZ2fTWfaE6bPNFWKGQoEN4R0puWNNZAhxrUamuMZYVqheCNplaVdk8R4kwgAlj1vQFGLqrZQdcEtZKb6NYq7mRQTu4LIS6kitnpAWSHKeW9VRgEo4yjDsohRCta3Nue2aL14aC1Gfs1GF0cimo4ET3teLeUi7CVnJOuuF0E3jwIxPBrhJTl2iUNw6A8hDHJpmEcI0QQKejrf9BVGKMvVhWKC8IwE0fUQpUPOG9DeVffi8or1vEWU0KaQk3_Q5VtYO108GBdqZ8MvD0ZKEyGu7xQY0py9v3bKfvuwOoYUopgH_3ASN5nUsK8ZFLuM1noV8cWPrJ_E0j-ANRi3RI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267351573</pqid></control><display><type>article</type><title>In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><creator>Gillingham, Alison K ; Bertram, Jessie ; Begum, Farida ; Munro, Sean</creator><creatorcontrib>Gillingham, Alison K ; Bertram, Jessie ; Begum, Farida ; Munro, Sean</creatorcontrib><description>The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/elife.45916</identifier><identifier>PMID: 31294692</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>BioID ; Biotinylation ; Cdc42 protein ; Cell Biology ; Chromatography ; Cytoskeleton ; E coli ; effector ; exchange factor ; G proteins ; GTP Phosphohydrolases - metabolism ; GTPase ; GTPases ; Guanosine diphosphate ; Guanosine triphosphatases ; Guanosine triphosphate ; Humans ; Hydrolysis ; Membrane trafficking ; Mitochondria ; Mitochondrial Proteins - metabolism ; MitoID ; Molecular Biology - methods ; Mutation ; Novels ; Physiological aspects ; Protein Binding ; Protein Interaction Mapping ; Proteins ; Ras superfamily ; RhoA protein ; Scientific imaging ; Tools and Resources</subject><ispartof>eLife, 2019-07, Vol.8</ispartof><rights>2019, Gillingham et al.</rights><rights>COPYRIGHT 2019 eLife Science Publications, Ltd.</rights><rights>2019, Gillingham et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019, Gillingham et al 2019 Gillingham et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53</citedby><cites>FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53</cites><orcidid>0000-0001-6160-5773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2267351573/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2267351573?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31294692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gillingham, Alison K</creatorcontrib><creatorcontrib>Bertram, Jessie</creatorcontrib><creatorcontrib>Begum, Farida</creatorcontrib><creatorcontrib>Munro, Sean</creatorcontrib><title>In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation</title><title>eLife</title><addtitle>Elife</addtitle><description>The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.</description><subject>BioID</subject><subject>Biotinylation</subject><subject>Cdc42 protein</subject><subject>Cell Biology</subject><subject>Chromatography</subject><subject>Cytoskeleton</subject><subject>E coli</subject><subject>effector</subject><subject>exchange factor</subject><subject>G proteins</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>GTPase</subject><subject>GTPases</subject><subject>Guanosine diphosphate</subject><subject>Guanosine triphosphatases</subject><subject>Guanosine triphosphate</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Membrane trafficking</subject><subject>Mitochondria</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>MitoID</subject><subject>Molecular Biology - methods</subject><subject>Mutation</subject><subject>Novels</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping</subject><subject>Proteins</subject><subject>Ras superfamily</subject><subject>RhoA protein</subject><subject>Scientific imaging</subject><subject>Tools and Resources</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt2LEzEUxQdR3GXdJ99lwBdFWpPJ18yLsCy6FgqKruBbyCQ3bco0qUmmbP3rzbbr0orJQ8K9v3tCDqeqXmI0FYzR9zA4C1PKOsyfVOcNYmiCWvrz6dH9rLpMaYXKErRtcfe8OiO46SjvmvNqOfP11m1D7Qz47KzTKrvg62Drm9uvKkHtfIaodA4x1f2uXrsc9DJ4E50a6ghD0Gpwvw9Typt6E8OdK9Su7l3Izu-Gfe9F9cyqIcHlw3lR_fj08fb682T-5WZ2fTWfaE6bPNFWKGQoEN4R0puWNNZAhxrUamuMZYVqheCNplaVdk8R4kwgAlj1vQFGLqrZQdcEtZKb6NYq7mRQTu4LIS6kitnpAWSHKeW9VRgEo4yjDsohRCta3Nue2aL14aC1Gfs1GF0cimo4ET3teLeUi7CVnJOuuF0E3jwIxPBrhJTl2iUNw6A8hDHJpmEcI0QQKejrf9BVGKMvVhWKC8IwE0fUQpUPOG9DeVffi8or1vEWU0KaQk3_Q5VtYO108GBdqZ8MvD0ZKEyGu7xQY0py9v3bKfvuwOoYUopgH_3ASN5nUsK8ZFLuM1noV8cWPrJ_E0j-ANRi3RI</recordid><startdate>20190711</startdate><enddate>20190711</enddate><creator>Gillingham, Alison K</creator><creator>Bertram, Jessie</creator><creator>Begum, Farida</creator><creator>Munro, Sean</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6160-5773</orcidid></search><sort><creationdate>20190711</creationdate><title>In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation</title><author>Gillingham, Alison K ; Bertram, Jessie ; Begum, Farida ; Munro, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BioID</topic><topic>Biotinylation</topic><topic>Cdc42 protein</topic><topic>Cell Biology</topic><topic>Chromatography</topic><topic>Cytoskeleton</topic><topic>E coli</topic><topic>effector</topic><topic>exchange factor</topic><topic>G proteins</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>GTPase</topic><topic>GTPases</topic><topic>Guanosine diphosphate</topic><topic>Guanosine triphosphatases</topic><topic>Guanosine triphosphate</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Membrane trafficking</topic><topic>Mitochondria</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>MitoID</topic><topic>Molecular Biology - methods</topic><topic>Mutation</topic><topic>Novels</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping</topic><topic>Proteins</topic><topic>Ras superfamily</topic><topic>RhoA protein</topic><topic>Scientific imaging</topic><topic>Tools and Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillingham, Alison K</creatorcontrib><creatorcontrib>Bertram, Jessie</creatorcontrib><creatorcontrib>Begum, Farida</creatorcontrib><creatorcontrib>Munro, Sean</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillingham, Alison K</au><au>Bertram, Jessie</au><au>Begum, Farida</au><au>Munro, Sean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2019-07-11</date><risdate>2019</risdate><volume>8</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>31294692</pmid><doi>10.7554/elife.45916</doi><orcidid>https://orcid.org/0000-0001-6160-5773</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2019-07, Vol.8
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_91446bfa1e7545609e545778781bfb5f
source PubMed Central Free; Publicly Available Content (ProQuest)
subjects BioID
Biotinylation
Cdc42 protein
Cell Biology
Chromatography
Cytoskeleton
E coli
effector
exchange factor
G proteins
GTP Phosphohydrolases - metabolism
GTPase
GTPases
Guanosine diphosphate
Guanosine triphosphatases
Guanosine triphosphate
Humans
Hydrolysis
Membrane trafficking
Mitochondria
Mitochondrial Proteins - metabolism
MitoID
Molecular Biology - methods
Mutation
Novels
Physiological aspects
Protein Binding
Protein Interaction Mapping
Proteins
Ras superfamily
RhoA protein
Scientific imaging
Tools and Resources
title In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A14%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20identification%20of%20GTPase%20interactors%20by%20mitochondrial%20relocalization%20and%20proximity%20biotinylation&rft.jtitle=eLife&rft.au=Gillingham,%20Alison%20K&rft.date=2019-07-11&rft.volume=8&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/elife.45916&rft_dat=%3Cgale_doaj_%3EA596814332%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267351573&rft_id=info:pmid/31294692&rft_galeid=A596814332&rfr_iscdi=true