Loading…
In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation
The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector prote...
Saved in:
Published in: | eLife 2019-07, Vol.8 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53 |
---|---|
cites | cdi_FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 8 |
creator | Gillingham, Alison K Bertram, Jessie Begum, Farida Munro, Sean |
description | The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms. |
doi_str_mv | 10.7554/elife.45916 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_91446bfa1e7545609e545778781bfb5f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A596814332</galeid><doaj_id>oai_doaj_org_article_91446bfa1e7545609e545778781bfb5f</doaj_id><sourcerecordid>A596814332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53</originalsourceid><addsrcrecordid>eNptkt2LEzEUxQdR3GXdJ99lwBdFWpPJ18yLsCy6FgqKruBbyCQ3bco0qUmmbP3rzbbr0orJQ8K9v3tCDqeqXmI0FYzR9zA4C1PKOsyfVOcNYmiCWvrz6dH9rLpMaYXKErRtcfe8OiO46SjvmvNqOfP11m1D7Qz47KzTKrvg62Drm9uvKkHtfIaodA4x1f2uXrsc9DJ4E50a6ghD0Gpwvw9Typt6E8OdK9Su7l3Izu-Gfe9F9cyqIcHlw3lR_fj08fb682T-5WZ2fTWfaE6bPNFWKGQoEN4R0puWNNZAhxrUamuMZYVqheCNplaVdk8R4kwgAlj1vQFGLqrZQdcEtZKb6NYq7mRQTu4LIS6kitnpAWSHKeW9VRgEo4yjDsohRCta3Nue2aL14aC1Gfs1GF0cimo4ET3teLeUi7CVnJOuuF0E3jwIxPBrhJTl2iUNw6A8hDHJpmEcI0QQKejrf9BVGKMvVhWKC8IwE0fUQpUPOG9DeVffi8or1vEWU0KaQk3_Q5VtYO108GBdqZ8MvD0ZKEyGu7xQY0py9v3bKfvuwOoYUopgH_3ASN5nUsK8ZFLuM1noV8cWPrJ_E0j-ANRi3RI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267351573</pqid></control><display><type>article</type><title>In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><creator>Gillingham, Alison K ; Bertram, Jessie ; Begum, Farida ; Munro, Sean</creator><creatorcontrib>Gillingham, Alison K ; Bertram, Jessie ; Begum, Farida ; Munro, Sean</creatorcontrib><description>The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/elife.45916</identifier><identifier>PMID: 31294692</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>BioID ; Biotinylation ; Cdc42 protein ; Cell Biology ; Chromatography ; Cytoskeleton ; E coli ; effector ; exchange factor ; G proteins ; GTP Phosphohydrolases - metabolism ; GTPase ; GTPases ; Guanosine diphosphate ; Guanosine triphosphatases ; Guanosine triphosphate ; Humans ; Hydrolysis ; Membrane trafficking ; Mitochondria ; Mitochondrial Proteins - metabolism ; MitoID ; Molecular Biology - methods ; Mutation ; Novels ; Physiological aspects ; Protein Binding ; Protein Interaction Mapping ; Proteins ; Ras superfamily ; RhoA protein ; Scientific imaging ; Tools and Resources</subject><ispartof>eLife, 2019-07, Vol.8</ispartof><rights>2019, Gillingham et al.</rights><rights>COPYRIGHT 2019 eLife Science Publications, Ltd.</rights><rights>2019, Gillingham et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019, Gillingham et al 2019 Gillingham et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53</citedby><cites>FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53</cites><orcidid>0000-0001-6160-5773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2267351573/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2267351573?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31294692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gillingham, Alison K</creatorcontrib><creatorcontrib>Bertram, Jessie</creatorcontrib><creatorcontrib>Begum, Farida</creatorcontrib><creatorcontrib>Munro, Sean</creatorcontrib><title>In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation</title><title>eLife</title><addtitle>Elife</addtitle><description>The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.</description><subject>BioID</subject><subject>Biotinylation</subject><subject>Cdc42 protein</subject><subject>Cell Biology</subject><subject>Chromatography</subject><subject>Cytoskeleton</subject><subject>E coli</subject><subject>effector</subject><subject>exchange factor</subject><subject>G proteins</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>GTPase</subject><subject>GTPases</subject><subject>Guanosine diphosphate</subject><subject>Guanosine triphosphatases</subject><subject>Guanosine triphosphate</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Membrane trafficking</subject><subject>Mitochondria</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>MitoID</subject><subject>Molecular Biology - methods</subject><subject>Mutation</subject><subject>Novels</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping</subject><subject>Proteins</subject><subject>Ras superfamily</subject><subject>RhoA protein</subject><subject>Scientific imaging</subject><subject>Tools and Resources</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt2LEzEUxQdR3GXdJ99lwBdFWpPJ18yLsCy6FgqKruBbyCQ3bco0qUmmbP3rzbbr0orJQ8K9v3tCDqeqXmI0FYzR9zA4C1PKOsyfVOcNYmiCWvrz6dH9rLpMaYXKErRtcfe8OiO46SjvmvNqOfP11m1D7Qz47KzTKrvg62Drm9uvKkHtfIaodA4x1f2uXrsc9DJ4E50a6ghD0Gpwvw9Typt6E8OdK9Su7l3Izu-Gfe9F9cyqIcHlw3lR_fj08fb682T-5WZ2fTWfaE6bPNFWKGQoEN4R0puWNNZAhxrUamuMZYVqheCNplaVdk8R4kwgAlj1vQFGLqrZQdcEtZKb6NYq7mRQTu4LIS6kitnpAWSHKeW9VRgEo4yjDsohRCta3Nue2aL14aC1Gfs1GF0cimo4ET3teLeUi7CVnJOuuF0E3jwIxPBrhJTl2iUNw6A8hDHJpmEcI0QQKejrf9BVGKMvVhWKC8IwE0fUQpUPOG9DeVffi8or1vEWU0KaQk3_Q5VtYO108GBdqZ8MvD0ZKEyGu7xQY0py9v3bKfvuwOoYUopgH_3ASN5nUsK8ZFLuM1noV8cWPrJ_E0j-ANRi3RI</recordid><startdate>20190711</startdate><enddate>20190711</enddate><creator>Gillingham, Alison K</creator><creator>Bertram, Jessie</creator><creator>Begum, Farida</creator><creator>Munro, Sean</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6160-5773</orcidid></search><sort><creationdate>20190711</creationdate><title>In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation</title><author>Gillingham, Alison K ; Bertram, Jessie ; Begum, Farida ; Munro, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BioID</topic><topic>Biotinylation</topic><topic>Cdc42 protein</topic><topic>Cell Biology</topic><topic>Chromatography</topic><topic>Cytoskeleton</topic><topic>E coli</topic><topic>effector</topic><topic>exchange factor</topic><topic>G proteins</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>GTPase</topic><topic>GTPases</topic><topic>Guanosine diphosphate</topic><topic>Guanosine triphosphatases</topic><topic>Guanosine triphosphate</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Membrane trafficking</topic><topic>Mitochondria</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>MitoID</topic><topic>Molecular Biology - methods</topic><topic>Mutation</topic><topic>Novels</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping</topic><topic>Proteins</topic><topic>Ras superfamily</topic><topic>RhoA protein</topic><topic>Scientific imaging</topic><topic>Tools and Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillingham, Alison K</creatorcontrib><creatorcontrib>Bertram, Jessie</creatorcontrib><creatorcontrib>Begum, Farida</creatorcontrib><creatorcontrib>Munro, Sean</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillingham, Alison K</au><au>Bertram, Jessie</au><au>Begum, Farida</au><au>Munro, Sean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2019-07-11</date><risdate>2019</risdate><volume>8</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>31294692</pmid><doi>10.7554/elife.45916</doi><orcidid>https://orcid.org/0000-0001-6160-5773</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2019-07, Vol.8 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_91446bfa1e7545609e545778781bfb5f |
source | PubMed Central Free; Publicly Available Content (ProQuest) |
subjects | BioID Biotinylation Cdc42 protein Cell Biology Chromatography Cytoskeleton E coli effector exchange factor G proteins GTP Phosphohydrolases - metabolism GTPase GTPases Guanosine diphosphate Guanosine triphosphatases Guanosine triphosphate Humans Hydrolysis Membrane trafficking Mitochondria Mitochondrial Proteins - metabolism MitoID Molecular Biology - methods Mutation Novels Physiological aspects Protein Binding Protein Interaction Mapping Proteins Ras superfamily RhoA protein Scientific imaging Tools and Resources |
title | In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A14%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20identification%20of%20GTPase%20interactors%20by%20mitochondrial%20relocalization%20and%20proximity%20biotinylation&rft.jtitle=eLife&rft.au=Gillingham,%20Alison%20K&rft.date=2019-07-11&rft.volume=8&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/elife.45916&rft_dat=%3Cgale_doaj_%3EA596814332%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c642t-cf7a0d4e36933bd832fde90208cfddf5c6487762c4fabd8b40065703e1abbde53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267351573&rft_id=info:pmid/31294692&rft_galeid=A596814332&rfr_iscdi=true |