Loading…

Spatially and temporally distributed data foraging decisions in disciplinary field science

How do scientists generate and weight candidate queries for hypothesis testing, and how does learning from observations or experimental data impact query selection? Field sciences offer a compelling context to ask these questions because query selection and adaptation involves consideration of the s...

Full description

Saved in:
Bibliographic Details
Published in:Cognitive research: principles and implications 2021-04, Vol.6 (1), p.29-29, Article 29
Main Authors: Wilson, Cristina G., Qian, Feifei, Jerolmack, Douglas J., Roberts, Sonia, Ham, Jonathan, Koditschek, Daniel, Shipley, Thomas F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c635t-c742fc638bcbd98c748d9ea54f9bc4426769a0c7878976cff68268751f7a425d3
cites cdi_FETCH-LOGICAL-c635t-c742fc638bcbd98c748d9ea54f9bc4426769a0c7878976cff68268751f7a425d3
container_end_page 29
container_issue 1
container_start_page 29
container_title Cognitive research: principles and implications
container_volume 6
creator Wilson, Cristina G.
Qian, Feifei
Jerolmack, Douglas J.
Roberts, Sonia
Ham, Jonathan
Koditschek, Daniel
Shipley, Thomas F.
description How do scientists generate and weight candidate queries for hypothesis testing, and how does learning from observations or experimental data impact query selection? Field sciences offer a compelling context to ask these questions because query selection and adaptation involves consideration of the spatiotemporal arrangement of data, and therefore closely parallels classic search and foraging behavior. Here we conduct a novel simulated data foraging study—and a complementary real-world case study—to determine how spatiotemporal data collection decisions are made in field sciences, and how search is adapted in response to in-situ data. Expert geoscientists evaluated a hypothesis by collecting environmental data using a mobile robot. At any point, participants were able to stop the robot and change their search strategy or make a conclusion about the hypothesis. We identified spatiotemporal reasoning heuristics, to which scientists strongly anchored, displaying limited adaptation to new data. We analyzed two key decision factors: variable-space coverage, and fitting error to the hypothesis. We found that, despite varied search strategies, the majority of scientists made a conclusion as the fitting error converged. Scientists who made premature conclusions, due to insufficient variable-space coverage or before the fitting error stabilized, were more prone to incorrect conclusions. We found that novice undergraduates used the same heuristics as expert geoscientists in a simplified version of the scenario. We believe the findings from this study could be used to improve field science training in data foraging, and aid in the development of technologies to support data collection decisions.
doi_str_mv 10.1186/s41235-021-00296-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_914b82603f474fcdb64cbc1945e1e9a2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1292172</ericid><doaj_id>oai_doaj_org_article_914b82603f474fcdb64cbc1945e1e9a2</doaj_id><sourcerecordid>2509610279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635t-c742fc638bcbd98c748d9ea54f9bc4426769a0c7878976cff68268751f7a425d3</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQtRCIVqV_AAkUiQuXgO3484KEqrYUVeIAXLhYjj-CV1k72Eml9tfj3ZSl5cDJM_PePI-fB4CXCL5DSLD3hSDc0RZi1EKIJWvvnoBj3DHacsLI0wfxETgtZQMhRJxKKeRzcNR1AlMpyDH48XXSc9DjeNvoaJvZbaeU96kNZc6hX2ZnG6tn3fgKDCEOjXUmlJBiaULc0UyYxhB1vm18cKNtasFF416AZ16PxZ3enyfg-8X5t7NP7fWXy6uzj9etYR2dW8MJ9jUUvemtFDUVVjpNiZe9IQQzzqSGhgsuJGfGeyYwE5wizzXB1HYn4GrVtUlv1JTDto6ikg5qX0h5UDrPwYxOSUT62g07TzjxxvaMmN4gSahDTmpctT6sWtPSb501Ls7VjUeij5EYfqoh3SgB61CwqwJv7wVy-rW4MqttNciNo44uLUVhCiVDEHNZqW_-oW7SkmO1as8iWCCOKguvLJNTKdn5wzAIqt0mqHUTVN0Etd8EdVebXj98xqHlz79XwquV4HIwB_j8M8ISI77zoVvxUrE4uPx3tv9c-xtS8MmK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509428171</pqid></control><display><type>article</type><title>Spatially and temporally distributed data foraging decisions in disciplinary field science</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><source>ERIC</source><source>PubMed Central</source><creator>Wilson, Cristina G. ; Qian, Feifei ; Jerolmack, Douglas J. ; Roberts, Sonia ; Ham, Jonathan ; Koditschek, Daniel ; Shipley, Thomas F.</creator><creatorcontrib>Wilson, Cristina G. ; Qian, Feifei ; Jerolmack, Douglas J. ; Roberts, Sonia ; Ham, Jonathan ; Koditschek, Daniel ; Shipley, Thomas F.</creatorcontrib><description>How do scientists generate and weight candidate queries for hypothesis testing, and how does learning from observations or experimental data impact query selection? Field sciences offer a compelling context to ask these questions because query selection and adaptation involves consideration of the spatiotemporal arrangement of data, and therefore closely parallels classic search and foraging behavior. Here we conduct a novel simulated data foraging study—and a complementary real-world case study—to determine how spatiotemporal data collection decisions are made in field sciences, and how search is adapted in response to in-situ data. Expert geoscientists evaluated a hypothesis by collecting environmental data using a mobile robot. At any point, participants were able to stop the robot and change their search strategy or make a conclusion about the hypothesis. We identified spatiotemporal reasoning heuristics, to which scientists strongly anchored, displaying limited adaptation to new data. We analyzed two key decision factors: variable-space coverage, and fitting error to the hypothesis. We found that, despite varied search strategies, the majority of scientists made a conclusion as the fitting error converged. Scientists who made premature conclusions, due to insufficient variable-space coverage or before the fitting error stabilized, were more prone to incorrect conclusions. We found that novice undergraduates used the same heuristics as expert geoscientists in a simplified version of the scenario. We believe the findings from this study could be used to improve field science training in data foraging, and aid in the development of technologies to support data collection decisions.</description><identifier>ISSN: 2365-7464</identifier><identifier>EISSN: 2365-7464</identifier><identifier>DOI: 10.1186/s41235-021-00296-z</identifier><identifier>PMID: 33825984</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptation ; Behavioral Science and Psychology ; Cognitive Psychology ; Data Collection ; Decision Making ; Earth Science ; Experimental Psychology ; Foraging behavior ; Heuristics ; Human–robot interaction ; Hypotheses ; Hypothesis Testing ; Information foraging ; Information search ; Information Seeking ; Man Machine Systems ; Metascience ; Neurosciences ; Novices ; Observational learning ; Original ; Original Article ; Problem solving ; Psychology ; Robotics ; Scientists ; Search Strategies ; Spatial heuristics ; Undergraduate Students</subject><ispartof>Cognitive research: principles and implications, 2021-04, Vol.6 (1), p.29-29, Article 29</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c635t-c742fc638bcbd98c748d9ea54f9bc4426769a0c7878976cff68268751f7a425d3</citedby><cites>FETCH-LOGICAL-c635t-c742fc638bcbd98c748d9ea54f9bc4426769a0c7878976cff68268751f7a425d3</cites><orcidid>0000-0002-9639-2752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026803/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2509428171?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1292172$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33825984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Cristina G.</creatorcontrib><creatorcontrib>Qian, Feifei</creatorcontrib><creatorcontrib>Jerolmack, Douglas J.</creatorcontrib><creatorcontrib>Roberts, Sonia</creatorcontrib><creatorcontrib>Ham, Jonathan</creatorcontrib><creatorcontrib>Koditschek, Daniel</creatorcontrib><creatorcontrib>Shipley, Thomas F.</creatorcontrib><title>Spatially and temporally distributed data foraging decisions in disciplinary field science</title><title>Cognitive research: principles and implications</title><addtitle>Cogn. Research</addtitle><addtitle>Cogn Res Princ Implic</addtitle><description>How do scientists generate and weight candidate queries for hypothesis testing, and how does learning from observations or experimental data impact query selection? Field sciences offer a compelling context to ask these questions because query selection and adaptation involves consideration of the spatiotemporal arrangement of data, and therefore closely parallels classic search and foraging behavior. Here we conduct a novel simulated data foraging study—and a complementary real-world case study—to determine how spatiotemporal data collection decisions are made in field sciences, and how search is adapted in response to in-situ data. Expert geoscientists evaluated a hypothesis by collecting environmental data using a mobile robot. At any point, participants were able to stop the robot and change their search strategy or make a conclusion about the hypothesis. We identified spatiotemporal reasoning heuristics, to which scientists strongly anchored, displaying limited adaptation to new data. We analyzed two key decision factors: variable-space coverage, and fitting error to the hypothesis. We found that, despite varied search strategies, the majority of scientists made a conclusion as the fitting error converged. Scientists who made premature conclusions, due to insufficient variable-space coverage or before the fitting error stabilized, were more prone to incorrect conclusions. We found that novice undergraduates used the same heuristics as expert geoscientists in a simplified version of the scenario. We believe the findings from this study could be used to improve field science training in data foraging, and aid in the development of technologies to support data collection decisions.</description><subject>Adaptation</subject><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Data Collection</subject><subject>Decision Making</subject><subject>Earth Science</subject><subject>Experimental Psychology</subject><subject>Foraging behavior</subject><subject>Heuristics</subject><subject>Human–robot interaction</subject><subject>Hypotheses</subject><subject>Hypothesis Testing</subject><subject>Information foraging</subject><subject>Information search</subject><subject>Information Seeking</subject><subject>Man Machine Systems</subject><subject>Metascience</subject><subject>Neurosciences</subject><subject>Novices</subject><subject>Observational learning</subject><subject>Original</subject><subject>Original Article</subject><subject>Problem solving</subject><subject>Psychology</subject><subject>Robotics</subject><subject>Scientists</subject><subject>Search Strategies</subject><subject>Spatial heuristics</subject><subject>Undergraduate Students</subject><issn>2365-7464</issn><issn>2365-7464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1v1DAQtRCIVqV_AAkUiQuXgO3484KEqrYUVeIAXLhYjj-CV1k72Eml9tfj3ZSl5cDJM_PePI-fB4CXCL5DSLD3hSDc0RZi1EKIJWvvnoBj3DHacsLI0wfxETgtZQMhRJxKKeRzcNR1AlMpyDH48XXSc9DjeNvoaJvZbaeU96kNZc6hX2ZnG6tn3fgKDCEOjXUmlJBiaULc0UyYxhB1vm18cKNtasFF416AZ16PxZ3enyfg-8X5t7NP7fWXy6uzj9etYR2dW8MJ9jUUvemtFDUVVjpNiZe9IQQzzqSGhgsuJGfGeyYwE5wizzXB1HYn4GrVtUlv1JTDto6ikg5qX0h5UDrPwYxOSUT62g07TzjxxvaMmN4gSahDTmpctT6sWtPSb501Ls7VjUeij5EYfqoh3SgB61CwqwJv7wVy-rW4MqttNciNo44uLUVhCiVDEHNZqW_-oW7SkmO1as8iWCCOKguvLJNTKdn5wzAIqt0mqHUTVN0Etd8EdVebXj98xqHlz79XwquV4HIwB_j8M8ISI77zoVvxUrE4uPx3tv9c-xtS8MmK</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Wilson, Cristina G.</creator><creator>Qian, Feifei</creator><creator>Jerolmack, Douglas J.</creator><creator>Roberts, Sonia</creator><creator>Ham, Jonathan</creator><creator>Koditschek, Daniel</creator><creator>Shipley, Thomas F.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2M</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9639-2752</orcidid></search><sort><creationdate>20210407</creationdate><title>Spatially and temporally distributed data foraging decisions in disciplinary field science</title><author>Wilson, Cristina G. ; Qian, Feifei ; Jerolmack, Douglas J. ; Roberts, Sonia ; Ham, Jonathan ; Koditschek, Daniel ; Shipley, Thomas F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635t-c742fc638bcbd98c748d9ea54f9bc4426769a0c7878976cff68268751f7a425d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Data Collection</topic><topic>Decision Making</topic><topic>Earth Science</topic><topic>Experimental Psychology</topic><topic>Foraging behavior</topic><topic>Heuristics</topic><topic>Human–robot interaction</topic><topic>Hypotheses</topic><topic>Hypothesis Testing</topic><topic>Information foraging</topic><topic>Information search</topic><topic>Information Seeking</topic><topic>Man Machine Systems</topic><topic>Metascience</topic><topic>Neurosciences</topic><topic>Novices</topic><topic>Observational learning</topic><topic>Original</topic><topic>Original Article</topic><topic>Problem solving</topic><topic>Psychology</topic><topic>Robotics</topic><topic>Scientists</topic><topic>Search Strategies</topic><topic>Spatial heuristics</topic><topic>Undergraduate Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Cristina G.</creatorcontrib><creatorcontrib>Qian, Feifei</creatorcontrib><creatorcontrib>Jerolmack, Douglas J.</creatorcontrib><creatorcontrib>Roberts, Sonia</creatorcontrib><creatorcontrib>Ham, Jonathan</creatorcontrib><creatorcontrib>Koditschek, Daniel</creatorcontrib><creatorcontrib>Shipley, Thomas F.</creatorcontrib><collection>SpringerOpen</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cognitive research: principles and implications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Cristina G.</au><au>Qian, Feifei</au><au>Jerolmack, Douglas J.</au><au>Roberts, Sonia</au><au>Ham, Jonathan</au><au>Koditschek, Daniel</au><au>Shipley, Thomas F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1292172</ericid><atitle>Spatially and temporally distributed data foraging decisions in disciplinary field science</atitle><jtitle>Cognitive research: principles and implications</jtitle><stitle>Cogn. Research</stitle><addtitle>Cogn Res Princ Implic</addtitle><date>2021-04-07</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><spage>29</spage><epage>29</epage><pages>29-29</pages><artnum>29</artnum><issn>2365-7464</issn><eissn>2365-7464</eissn><abstract>How do scientists generate and weight candidate queries for hypothesis testing, and how does learning from observations or experimental data impact query selection? Field sciences offer a compelling context to ask these questions because query selection and adaptation involves consideration of the spatiotemporal arrangement of data, and therefore closely parallels classic search and foraging behavior. Here we conduct a novel simulated data foraging study—and a complementary real-world case study—to determine how spatiotemporal data collection decisions are made in field sciences, and how search is adapted in response to in-situ data. Expert geoscientists evaluated a hypothesis by collecting environmental data using a mobile robot. At any point, participants were able to stop the robot and change their search strategy or make a conclusion about the hypothesis. We identified spatiotemporal reasoning heuristics, to which scientists strongly anchored, displaying limited adaptation to new data. We analyzed two key decision factors: variable-space coverage, and fitting error to the hypothesis. We found that, despite varied search strategies, the majority of scientists made a conclusion as the fitting error converged. Scientists who made premature conclusions, due to insufficient variable-space coverage or before the fitting error stabilized, were more prone to incorrect conclusions. We found that novice undergraduates used the same heuristics as expert geoscientists in a simplified version of the scenario. We believe the findings from this study could be used to improve field science training in data foraging, and aid in the development of technologies to support data collection decisions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33825984</pmid><doi>10.1186/s41235-021-00296-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9639-2752</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2365-7464
ispartof Cognitive research: principles and implications, 2021-04, Vol.6 (1), p.29-29, Article 29
issn 2365-7464
2365-7464
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_914b82603f474fcdb64cbc1945e1e9a2
source Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest); ERIC; PubMed Central
subjects Adaptation
Behavioral Science and Psychology
Cognitive Psychology
Data Collection
Decision Making
Earth Science
Experimental Psychology
Foraging behavior
Heuristics
Human–robot interaction
Hypotheses
Hypothesis Testing
Information foraging
Information search
Information Seeking
Man Machine Systems
Metascience
Neurosciences
Novices
Observational learning
Original
Original Article
Problem solving
Psychology
Robotics
Scientists
Search Strategies
Spatial heuristics
Undergraduate Students
title Spatially and temporally distributed data foraging decisions in disciplinary field science
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20and%20temporally%20distributed%20data%20foraging%20decisions%20in%20disciplinary%20field%20science&rft.jtitle=Cognitive%20research:%20principles%20and%20implications&rft.au=Wilson,%20Cristina%20G.&rft.date=2021-04-07&rft.volume=6&rft.issue=1&rft.spage=29&rft.epage=29&rft.pages=29-29&rft.artnum=29&rft.issn=2365-7464&rft.eissn=2365-7464&rft_id=info:doi/10.1186/s41235-021-00296-z&rft_dat=%3Cproquest_doaj_%3E2509610279%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c635t-c742fc638bcbd98c748d9ea54f9bc4426769a0c7878976cff68268751f7a425d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509428171&rft_id=info:pmid/33825984&rft_ericid=EJ1292172&rfr_iscdi=true