Loading…
Revisiting the theoretical prediction of the explosive performance found by the Trauzl test
The Trauzl lead block test allows the determination of the approximate performance of explosives in blasting applications by measuring the volume increase (expansion) that is produced by the detonation of an explosive charge in the cavity of a lead block. In this paper, we reconsider the possibility...
Saved in:
Published in: | Defence technology 2024-06, Vol.36, p.163-174 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-fdd57caa13c8216dc379adf77e707df0d2f8709f064ec36bdf443e4769faf66d3 |
container_end_page | 174 |
container_issue | |
container_start_page | 163 |
container_title | Defence technology |
container_volume | 36 |
creator | Dobrilovic, Ivana Dobrilovic, Mario Suceska, Muhamed |
description | The Trauzl lead block test allows the determination of the approximate performance of explosives in blasting applications by measuring the volume increase (expansion) that is produced by the detonation of an explosive charge in the cavity of a lead block. In this paper, we reconsider the possibility of interpreting the Trauzl test results in terms of detonation parameters or quantities. The detonation parameters used in the analysis are calculated using the thermochemical code EXPLO5, while the hydrocode AUTODYN is used to simulate the effect of explosive charge density and reaction rate on the results of the Trauzl test. The increase in the volume of the lead block cavity was found to correlate best with the product of the detonation heat and the root of the volume of detonation products. Hydrocode simulation showed that the density of explosive charge and the rate of explosive decomposition affect the dynamics of the interaction of the detonation product and the lead block, and consequently the lead block cavity volume increase. |
doi_str_mv | 10.1016/j.dt.2023.08.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_915fae909d9c42e6845053368032500e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214914723002283</els_id><doaj_id>oai_doaj_org_article_915fae909d9c42e6845053368032500e</doaj_id><sourcerecordid>3076797263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-fdd57caa13c8216dc379adf77e707df0d2f8709f064ec36bdf443e4769faf66d3</originalsourceid><addsrcrecordid>eNp1UU1rGzEQXUoDDW7uPS707O1I2pVWvRWTJgZDIaSnHIQsjVwtm9VWkk3TXx_ZDiGXHMSImffefLyq-kKgIUD4t6GxuaFAWQN9A4R9qC4pJe1SklZ8fPP_VF2lNAAA6UuuE5fVwx0efPLZT7s6_8HjCxGzN3qs54jWm-zDVAd3quK_eQzJH7CeMboQH_VksHZhP9l6-3SC3Ee9_z_WGVP-XF04PSa8eomL6vfP6_vV7XLz62a9-rFZGtazvHTWdsJoTZjpKeHWMCG1dUKgAGEdWOp6AdIBb9EwvrWubRm2gkunHeeWLar1WdcGPag5-kcdn1TQXp0SIe6UjmWlEZUkndMoQVppWoq8bzvoGOM9MNoBYNH6etaaY_i7L0uoIezjVMZXDAQXUlDOCgrOKBNDShHda1cC6uiIGpTN6uiIgl4VRwrl-5mC5RIHj1El47Gcz_qIJpdR_fvkZ1KNkqs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076797263</pqid></control><display><type>article</type><title>Revisiting the theoretical prediction of the explosive performance found by the Trauzl test</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Dobrilovic, Ivana ; Dobrilovic, Mario ; Suceska, Muhamed</creator><creatorcontrib>Dobrilovic, Ivana ; Dobrilovic, Mario ; Suceska, Muhamed</creatorcontrib><description>The Trauzl lead block test allows the determination of the approximate performance of explosives in blasting applications by measuring the volume increase (expansion) that is produced by the detonation of an explosive charge in the cavity of a lead block. In this paper, we reconsider the possibility of interpreting the Trauzl test results in terms of detonation parameters or quantities. The detonation parameters used in the analysis are calculated using the thermochemical code EXPLO5, while the hydrocode AUTODYN is used to simulate the effect of explosive charge density and reaction rate on the results of the Trauzl test. The increase in the volume of the lead block cavity was found to correlate best with the product of the detonation heat and the root of the volume of detonation products. Hydrocode simulation showed that the density of explosive charge and the rate of explosive decomposition affect the dynamics of the interaction of the detonation product and the lead block, and consequently the lead block cavity volume increase.</description><identifier>ISSN: 2214-9147</identifier><identifier>ISSN: 2096-3459</identifier><identifier>EISSN: 2214-9147</identifier><identifier>DOI: 10.1016/j.dt.2023.08.013</identifier><language>eng</language><publisher>Beijing: Elsevier B.V</publisher><subject>AUTODYN ; Blasting (explosive) ; Charge density ; Correlation analysis ; Detonation ; Detonation heat ; EXPLO5 ; Explosives ; Gases ; Heat ; Parameters ; Performance of explosives ; Trauzl lead block test ; Velocity</subject><ispartof>Defence technology, 2024-06, Vol.36, p.163-174</ispartof><rights>2023 China Ordnance Society</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c383t-fdd57caa13c8216dc379adf77e707df0d2f8709f064ec36bdf443e4769faf66d3</cites><orcidid>0000-0001-8271-205X ; 0000-0002-1418-6032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3076797263?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,25730,27900,27901,36988,44565,45755</link.rule.ids></links><search><creatorcontrib>Dobrilovic, Ivana</creatorcontrib><creatorcontrib>Dobrilovic, Mario</creatorcontrib><creatorcontrib>Suceska, Muhamed</creatorcontrib><title>Revisiting the theoretical prediction of the explosive performance found by the Trauzl test</title><title>Defence technology</title><description>The Trauzl lead block test allows the determination of the approximate performance of explosives in blasting applications by measuring the volume increase (expansion) that is produced by the detonation of an explosive charge in the cavity of a lead block. In this paper, we reconsider the possibility of interpreting the Trauzl test results in terms of detonation parameters or quantities. The detonation parameters used in the analysis are calculated using the thermochemical code EXPLO5, while the hydrocode AUTODYN is used to simulate the effect of explosive charge density and reaction rate on the results of the Trauzl test. The increase in the volume of the lead block cavity was found to correlate best with the product of the detonation heat and the root of the volume of detonation products. Hydrocode simulation showed that the density of explosive charge and the rate of explosive decomposition affect the dynamics of the interaction of the detonation product and the lead block, and consequently the lead block cavity volume increase.</description><subject>AUTODYN</subject><subject>Blasting (explosive)</subject><subject>Charge density</subject><subject>Correlation analysis</subject><subject>Detonation</subject><subject>Detonation heat</subject><subject>EXPLO5</subject><subject>Explosives</subject><subject>Gases</subject><subject>Heat</subject><subject>Parameters</subject><subject>Performance of explosives</subject><subject>Trauzl lead block test</subject><subject>Velocity</subject><issn>2214-9147</issn><issn>2096-3459</issn><issn>2214-9147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1rGzEQXUoDDW7uPS707O1I2pVWvRWTJgZDIaSnHIQsjVwtm9VWkk3TXx_ZDiGXHMSImffefLyq-kKgIUD4t6GxuaFAWQN9A4R9qC4pJe1SklZ8fPP_VF2lNAAA6UuuE5fVwx0efPLZT7s6_8HjCxGzN3qs54jWm-zDVAd3quK_eQzJH7CeMboQH_VksHZhP9l6-3SC3Ee9_z_WGVP-XF04PSa8eomL6vfP6_vV7XLz62a9-rFZGtazvHTWdsJoTZjpKeHWMCG1dUKgAGEdWOp6AdIBb9EwvrWubRm2gkunHeeWLar1WdcGPag5-kcdn1TQXp0SIe6UjmWlEZUkndMoQVppWoq8bzvoGOM9MNoBYNH6etaaY_i7L0uoIezjVMZXDAQXUlDOCgrOKBNDShHda1cC6uiIGpTN6uiIgl4VRwrl-5mC5RIHj1El47Gcz_qIJpdR_fvkZ1KNkqs</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Dobrilovic, Ivana</creator><creator>Dobrilovic, Mario</creator><creator>Suceska, Muhamed</creator><general>Elsevier B.V</general><general>KeAi Publishing Communications Ltd</general><general>KeAi Communications Co., Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88F</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M1Q</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8271-205X</orcidid><orcidid>https://orcid.org/0000-0002-1418-6032</orcidid></search><sort><creationdate>20240601</creationdate><title>Revisiting the theoretical prediction of the explosive performance found by the Trauzl test</title><author>Dobrilovic, Ivana ; Dobrilovic, Mario ; Suceska, Muhamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-fdd57caa13c8216dc379adf77e707df0d2f8709f064ec36bdf443e4769faf66d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AUTODYN</topic><topic>Blasting (explosive)</topic><topic>Charge density</topic><topic>Correlation analysis</topic><topic>Detonation</topic><topic>Detonation heat</topic><topic>EXPLO5</topic><topic>Explosives</topic><topic>Gases</topic><topic>Heat</topic><topic>Parameters</topic><topic>Performance of explosives</topic><topic>Trauzl lead block test</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobrilovic, Ivana</creatorcontrib><creatorcontrib>Dobrilovic, Mario</creatorcontrib><creatorcontrib>Suceska, Muhamed</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Military Database</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Defence technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobrilovic, Ivana</au><au>Dobrilovic, Mario</au><au>Suceska, Muhamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the theoretical prediction of the explosive performance found by the Trauzl test</atitle><jtitle>Defence technology</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>36</volume><spage>163</spage><epage>174</epage><pages>163-174</pages><issn>2214-9147</issn><issn>2096-3459</issn><eissn>2214-9147</eissn><abstract>The Trauzl lead block test allows the determination of the approximate performance of explosives in blasting applications by measuring the volume increase (expansion) that is produced by the detonation of an explosive charge in the cavity of a lead block. In this paper, we reconsider the possibility of interpreting the Trauzl test results in terms of detonation parameters or quantities. The detonation parameters used in the analysis are calculated using the thermochemical code EXPLO5, while the hydrocode AUTODYN is used to simulate the effect of explosive charge density and reaction rate on the results of the Trauzl test. The increase in the volume of the lead block cavity was found to correlate best with the product of the detonation heat and the root of the volume of detonation products. Hydrocode simulation showed that the density of explosive charge and the rate of explosive decomposition affect the dynamics of the interaction of the detonation product and the lead block, and consequently the lead block cavity volume increase.</abstract><cop>Beijing</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dt.2023.08.013</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8271-205X</orcidid><orcidid>https://orcid.org/0000-0002-1418-6032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2214-9147 |
ispartof | Defence technology, 2024-06, Vol.36, p.163-174 |
issn | 2214-9147 2096-3459 2214-9147 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_915fae909d9c42e6845053368032500e |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); ScienceDirect Journals; EZB Electronic Journals Library |
subjects | AUTODYN Blasting (explosive) Charge density Correlation analysis Detonation Detonation heat EXPLO5 Explosives Gases Heat Parameters Performance of explosives Trauzl lead block test Velocity |
title | Revisiting the theoretical prediction of the explosive performance found by the Trauzl test |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T12%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20theoretical%20prediction%20of%20the%20explosive%20performance%20found%20by%20the%20Trauzl%20test&rft.jtitle=Defence%20technology&rft.au=Dobrilovic,%20Ivana&rft.date=2024-06-01&rft.volume=36&rft.spage=163&rft.epage=174&rft.pages=163-174&rft.issn=2214-9147&rft.eissn=2214-9147&rft_id=info:doi/10.1016/j.dt.2023.08.013&rft_dat=%3Cproquest_doaj_%3E3076797263%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-fdd57caa13c8216dc379adf77e707df0d2f8709f064ec36bdf443e4769faf66d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076797263&rft_id=info:pmid/&rfr_iscdi=true |