Loading…
An Energy-Efficient BJT-Based Temperature Sensor with ±0.8 °C (3 σ ) Inaccuracy from -50 to 150 °C
This article presents an energy-efficient BJT-based temperature sensor. The output of sensing front-ends is modulated by employing an incremental Δ-Σ ADC as a readout interface. The cascoded floating-inverter-based dynamic amplifier (FIA) is used as the integrator instead of the conventional operati...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-12, Vol.22 (23), p.9381 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents an energy-efficient BJT-based temperature sensor. The output of sensing front-ends is modulated by employing an incremental Δ-Σ ADC as a readout interface. The cascoded floating-inverter-based dynamic amplifier (FIA) is used as the integrator instead of the conventional operational transconductance amplifier (OTA) to achieve a low power consumption. To enhance the accuracy, chopping and dynamic element matching (DEM) are applied to eliminate the component mismatch error while β-compensation resistor and optimized bias current are used to minimize the effect of β variation. Fabricated in a standard 180-nm CMOS process, this sensor has an active area of 0.13 mm2. While dissipating only 45.7 μW in total, the sensor achieves an inaccuracy of ±0.8 °C (3σ) from -50 °C to 150 °C after one-point calibration. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22239381 |