Loading…
Numerical simulation of flow on circular crested stepped spillway
The spillways are one of the most important hydraulic structures used in river engineering, dam construction, irrigation, and drainage engineering projects. Recently, a new type of such spillways with a circular crest has been proposed. In this paper, the hydraulic properties of the circular crested...
Saved in:
Published in: | Applied water science 2022-09, Vol.12 (9), p.1-10, Article 215 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The spillways are one of the most important hydraulic structures used in river engineering, dam construction, irrigation, and drainage engineering projects. Recently, a new type of such spillways with a circular crest has been proposed. In this paper, the hydraulic properties of the circular crested stepped spillway (CCSS) including flow pattern, distribution of velocity on the crest and pressure, turbulence intensity, discharge coefficient (
C
d
) and energy dissipation ratio (EDR) were investigated numerically. To model the free surface of flow the volume of fluid technique, and for modeling the turbulence of flow, k − ε (RNG) was utilized. Results declared that there is a good agreement between the laboratory observations and numerical simulation. The
C
d
of the CCSS changes between 0.9 and 1.4 considering the range of relative upstream head (
h
up
/
R
) between 0.33 m and 2.67. The observation of the flow streamlines showed that they are tangential to the curvature of the crest and there is no separation of the flow from the crest. Examination of the pressure distribution on the CCSS model shows that just downstream part of the crest, the pressure is partially negative. Of course, the same partial negative pressure is observed on the edge of the steps. The steps increase the maximum intensity turbulence by 50%. The CCSS can dissipate the energy of flow between 90 and 30%, and in the skimming flow regime, the portion of each step in the energy dissipation regardless of their position is almost identical. |
---|---|
ISSN: | 2190-5487 2190-5495 |
DOI: | 10.1007/s13201-022-01737-w |