Loading…

Potential of Forage Grasses in Phytoremediation of Lead through Production of Phytoliths in Contaminated Soils

Phytoremediation has become a promising technique for cleaning Pb-contaminated soils. Grasses have a phytoextractor potential for extracting metal from soil by transporting it and accumulating it in high concentrations in their shoots, and they have the ability to immobilize and inactivate it via ph...

Full description

Saved in:
Bibliographic Details
Published in:Land (Basel) 2023-01, Vol.12 (1), p.62
Main Authors: Farnezi, Múcio Magno de Melo, Silva, Enilson de Barros, Santos, Lauana Lopes dos, Silva, Alexandre Christofaro, Grazziotti, Paulo Henrique, Alleoni, Luís Reynaldo Ferracciú, Silva, Wesley Costa, Santos, Angela Aparecida, Alves, Flávio Antônio Fernandes, Bezerra, Iracema Raquel Santos, Miranda, Li Chaves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phytoremediation has become a promising technique for cleaning Pb-contaminated soils. Grasses have a phytoextractor potential for extracting metal from soil by transporting it and accumulating it in high concentrations in their shoots, and they have the ability to immobilize and inactivate it via phytoliths. The objective of this work was to evaluate the phytoremediation potential of forage grasses through the production of phytoliths and the occlusion of Pb in the phytoliths cultivated in Pb-contaminated soils. Three greenhouse experiments were conducted in a completely randomized design, separated by soil type (Typical Hapludox, Xanthic Hapludox and Rhodic Hapludox), in a 3 × 4 factorial scheme consisting of three forage grasses (Megathyrsus maximus, Urochloa brizantha and Urochloa decumbens) and four Pb rates (0, 45, 90 and 270 mg kg−1) with four repetitions. The forage grasses were influenced by increases in the Pb concentrations in the soils. The higher Pb availability in Typic Quartzipsamment promoted Pb toxicity, as indicated by the reduced dry weights of the shoots, increased phytolith production in the shoots, increased Pb in the shoots and Pb occlusion in the phytoliths of the forage grasses. The production and Pb capture in the phytoliths in the grasses in the Pb-contaminated soils were related to the genetic and physiological differences in the forage grasses and the Pb availability in the soils. Urochloa brizantha was the most tolerant forage to the excess Pb, with a higher production of phytoliths and higher Pb occlusion in the phytoliths, making it a forage grass that can be used in the future for the phytoremediation of Pb-contaminated soils.
ISSN:2073-445X
2073-445X
DOI:10.3390/land12010062