Loading…

Revealing the Minimum Energy Pathways for Formamide Hydrogenation Reactions in the Presence of Platinum and Platinum–Vanadium Clusters: A Quantum Chemical DFT/Nudged Elastic Band Study

A detailed study on the stages of catalytic reactions involving platinum and platinum-vanadium clusters has been carried out. Minimum energy pathways (MEP) of reactions have been constructed via the DFT/PBE0/def2tzvp method using NEB functional and optimized structures, and points of minima and tran...

Full description

Saved in:
Bibliographic Details
Published in:Inorganics 2023-10, Vol.11 (10), p.384
Main Authors: Panina, Natalia S., Klyukin, Ilya N., Buslaeva, Tatyana M., Fischer, Andrei I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A detailed study on the stages of catalytic reactions involving platinum and platinum-vanadium clusters has been carried out. Minimum energy pathways (MEP) of reactions have been constructed via the DFT/PBE0/def2tzvp method using NEB functional and optimized structures, and points of minima and transition states have been calculated. A two-step process for the conversion of formamide to methylamine under the action of H2 has been considered as a test reaction. The energy barriers of this reaction, not previously described in the literature, have been evaluated. It has been shown that the main changes in the structural characteristics of the reagents, as well as the migration of single H atoms from one metal center of clusters to another or to an organic substrate, are initiated at the molecular level by shifts corresponding to the vectors of normal vibrations of systems in transition states.
ISSN:2304-6740
2304-6740
DOI:10.3390/inorganics11100384