Loading…
Programming Bordetella pertussis lipid A to promote adjuvanticity
Bordetella pertussis is the causative agent of whooping cough or pertussis. Although both acellular (aP) and whole-cell pertussis (wP) vaccines protect against disease, the wP vaccine, which is highly reactogenic, is better at preventing colonization and transmission. Reactogenicity is mainly attrib...
Saved in:
Published in: | Microbial cell factories 2024-09, Vol.23 (1), p.250-18, Article 250 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bordetella pertussis is the causative agent of whooping cough or pertussis. Although both acellular (aP) and whole-cell pertussis (wP) vaccines protect against disease, the wP vaccine, which is highly reactogenic, is better at preventing colonization and transmission. Reactogenicity is mainly attributed to the lipid A moiety of B. pertussis lipooligosaccharide (LOS). Within LOS, lipid A acts as a hydrophobic anchor, engaging with TLR4-MD2 on host immune cells to initiate both MyD88-dependent and TRIF-dependent pathways, thereby influencing adaptive immune responses. Lipid A variants, such as monophosphoryl lipid A (MPLA) can also act as adjuvants. Adjuvants may overcome the shortcomings of aP vaccines.
This work used lipid A modifying enzymes from other bacteria to produce an MPLA-like adjuvant strain in B. pertussis. We created B. pertussis strains with distinct lipid A modifications, which were validated using MALDI-TOF. We engineered a hexa-acylated monophosphorylated lipid A that markedly decreased human TLR4 activation and activated the TRIF pathway. The modified lipooligosaccharide (LOS) promoted IRF3 phosphorylation and type I interferon production, similar to MPLA responses. We generated three other variants with increased adjuvanticity properties and reduced endotoxicity. Pyrogenicity studies using the Monocyte Activation Test (MAT) revealed that these four lipid A variants significantly decreased the IL-6, a marker for fever, response in peripheral blood mononuclear cells (PBMCs).
These findings pave the way for developing wP vaccines that are possibly less reactogenic and designing adaptable adjuvants for current vaccine formulations, advancing more effective immunization strategies against pertussis. |
---|---|
ISSN: | 1475-2859 1475-2859 |
DOI: | 10.1186/s12934-024-02518-7 |