Loading…

Ultrafast Hole Deformation Revealed by Molecular Attosecond Interferometry

Understanding the evolution of molecular electronic structures is the key to explore and control photochemical reactions and photobiological processes. Subjected to strong laser fields, electronic holes are formed upon ionization and evolve in the attosecond timescale. It is crucial to probe the ele...

Full description

Saved in:
Bibliographic Details
Published in:Ultrafast science 2021-01, Vol.2021
Main Authors: Huang, Yindong, Zhao, Jing, Shu, Zheng, Zhu, Yalei, Liu, Jinlei, Dong, Wenpu, Wang, Xiaowei, Lü, Zhihui, Zhang, Dongwen, Yuan, Jianmin, Chen, Jing, Zhao, Zengxiu
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c342t-ad62a9bd9e662166076845d6ada9f30dfbda85b5ca14cef7478ba8140920683c3
cites cdi_FETCH-LOGICAL-c342t-ad62a9bd9e662166076845d6ada9f30dfbda85b5ca14cef7478ba8140920683c3
container_end_page
container_issue
container_start_page
container_title Ultrafast science
container_volume 2021
creator Huang, Yindong
Zhao, Jing
Shu, Zheng
Zhu, Yalei
Liu, Jinlei
Dong, Wenpu
Wang, Xiaowei
Lü, Zhihui
Zhang, Dongwen
Yuan, Jianmin
Chen, Jing
Zhao, Zengxiu
description Understanding the evolution of molecular electronic structures is the key to explore and control photochemical reactions and photobiological processes. Subjected to strong laser fields, electronic holes are formed upon ionization and evolve in the attosecond timescale. It is crucial to probe the electronic dynamics in real time with attosecond-temporal and atomic-spatial precision. Here, we present molecular attosecond interferometry that enables the in situ manipulation of holes in carbon dioxide molecules via the interferometry of the phase-locked electrons (propagating in opposite directions) of a laser-triggered rotational wave packet. The joint measurement on high-harmonic and terahertz spectroscopy (HATS) provides a unique tool for understanding electron dynamics from picoseconds to attoseconds. The optimum phases of two-color pulses for controlling the electron wave packet are precisely determined owing to the robust reference provided with the terahertz pulse generation. It is noteworthy that the contribution of HOMO-1 and HOMO-2 increases reflecting the deformation of the hole as the harmonic order increases. Our method can be applied to study hole dynamics of complex molecules and electron correlations during the strong-field process. The threefold control through molecular alignment, laser polarization, and the two-color pulse phase delay allows the precise manipulation of the transient hole paving the way for new advances in attochemistry.
doi_str_mv 10.34133/2021/9837107
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_91c5893995964abebb31b28e6b4e4de0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_91c5893995964abebb31b28e6b4e4de0</doaj_id><sourcerecordid>oai_doaj_org_article_91c5893995964abebb31b28e6b4e4de0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-ad62a9bd9e662166076845d6ada9f30dfbda85b5ca14cef7478ba8140920683c3</originalsourceid><addsrcrecordid>eNpNkM1KAzEYRYMoWGqX7ucFxuZvMsmy1J9WKoLYdfiSfJEp00YyUejbW9siru7lXjiLQ8gto3dCMiGmnHI2NVq0jLYXZMRb1dS6NezyX78mk2HYUEq5NqzhZkSe133JEGEo1SL1WN1jTHkLpUu76g2_EXoMldtXL4fTf_WQq1kpaUCfdqFa7grmiDltseT9DbmK0A84OeeYrB8f3ueLevX6tJzPVrUXkpcaguJgXDCoFGdK0VZp2QQFAUwUNEQXQDeu8cCkx9jKVjvQTFLDqdLCizFZnrghwcZ-5m4LeW8TdPY4pPxhIZfO92gN8402wpjGKAkOnRPMcY3KSZQB6YFVn1g-p2HIGP94jNqjV_vr1Z69ih-TAmp_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast Hole Deformation Revealed by Molecular Attosecond Interferometry</title><source>EZB Electronic Journals Library</source><creator>Huang, Yindong ; Zhao, Jing ; Shu, Zheng ; Zhu, Yalei ; Liu, Jinlei ; Dong, Wenpu ; Wang, Xiaowei ; Lü, Zhihui ; Zhang, Dongwen ; Yuan, Jianmin ; Chen, Jing ; Zhao, Zengxiu</creator><creatorcontrib>Huang, Yindong ; Zhao, Jing ; Shu, Zheng ; Zhu, Yalei ; Liu, Jinlei ; Dong, Wenpu ; Wang, Xiaowei ; Lü, Zhihui ; Zhang, Dongwen ; Yuan, Jianmin ; Chen, Jing ; Zhao, Zengxiu</creatorcontrib><description>Understanding the evolution of molecular electronic structures is the key to explore and control photochemical reactions and photobiological processes. Subjected to strong laser fields, electronic holes are formed upon ionization and evolve in the attosecond timescale. It is crucial to probe the electronic dynamics in real time with attosecond-temporal and atomic-spatial precision. Here, we present molecular attosecond interferometry that enables the in situ manipulation of holes in carbon dioxide molecules via the interferometry of the phase-locked electrons (propagating in opposite directions) of a laser-triggered rotational wave packet. The joint measurement on high-harmonic and terahertz spectroscopy (HATS) provides a unique tool for understanding electron dynamics from picoseconds to attoseconds. The optimum phases of two-color pulses for controlling the electron wave packet are precisely determined owing to the robust reference provided with the terahertz pulse generation. It is noteworthy that the contribution of HOMO-1 and HOMO-2 increases reflecting the deformation of the hole as the harmonic order increases. Our method can be applied to study hole dynamics of complex molecules and electron correlations during the strong-field process. The threefold control through molecular alignment, laser polarization, and the two-color pulse phase delay allows the precise manipulation of the transient hole paving the way for new advances in attochemistry.</description><identifier>ISSN: 2765-8791</identifier><identifier>EISSN: 2765-8791</identifier><identifier>DOI: 10.34133/2021/9837107</identifier><language>eng</language><publisher>American Association for the Advancement of Science (AAAS)</publisher><ispartof>Ultrafast science, 2021-01, Vol.2021</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-ad62a9bd9e662166076845d6ada9f30dfbda85b5ca14cef7478ba8140920683c3</citedby><cites>FETCH-LOGICAL-c342t-ad62a9bd9e662166076845d6ada9f30dfbda85b5ca14cef7478ba8140920683c3</cites><orcidid>0000-0001-7974-7702 ; 0000-0003-3885-9606 ; 0000-0002-4151-6367 ; 0000-0002-4173-3142 ; 0000-0001-6912-5299 ; 0000-0002-9315-0854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Huang, Yindong</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Shu, Zheng</creatorcontrib><creatorcontrib>Zhu, Yalei</creatorcontrib><creatorcontrib>Liu, Jinlei</creatorcontrib><creatorcontrib>Dong, Wenpu</creatorcontrib><creatorcontrib>Wang, Xiaowei</creatorcontrib><creatorcontrib>Lü, Zhihui</creatorcontrib><creatorcontrib>Zhang, Dongwen</creatorcontrib><creatorcontrib>Yuan, Jianmin</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Zhao, Zengxiu</creatorcontrib><title>Ultrafast Hole Deformation Revealed by Molecular Attosecond Interferometry</title><title>Ultrafast science</title><description>Understanding the evolution of molecular electronic structures is the key to explore and control photochemical reactions and photobiological processes. Subjected to strong laser fields, electronic holes are formed upon ionization and evolve in the attosecond timescale. It is crucial to probe the electronic dynamics in real time with attosecond-temporal and atomic-spatial precision. Here, we present molecular attosecond interferometry that enables the in situ manipulation of holes in carbon dioxide molecules via the interferometry of the phase-locked electrons (propagating in opposite directions) of a laser-triggered rotational wave packet. The joint measurement on high-harmonic and terahertz spectroscopy (HATS) provides a unique tool for understanding electron dynamics from picoseconds to attoseconds. The optimum phases of two-color pulses for controlling the electron wave packet are precisely determined owing to the robust reference provided with the terahertz pulse generation. It is noteworthy that the contribution of HOMO-1 and HOMO-2 increases reflecting the deformation of the hole as the harmonic order increases. Our method can be applied to study hole dynamics of complex molecules and electron correlations during the strong-field process. The threefold control through molecular alignment, laser polarization, and the two-color pulse phase delay allows the precise manipulation of the transient hole paving the way for new advances in attochemistry.</description><issn>2765-8791</issn><issn>2765-8791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkM1KAzEYRYMoWGqX7ucFxuZvMsmy1J9WKoLYdfiSfJEp00YyUejbW9siru7lXjiLQ8gto3dCMiGmnHI2NVq0jLYXZMRb1dS6NezyX78mk2HYUEq5NqzhZkSe133JEGEo1SL1WN1jTHkLpUu76g2_EXoMldtXL4fTf_WQq1kpaUCfdqFa7grmiDltseT9DbmK0A84OeeYrB8f3ueLevX6tJzPVrUXkpcaguJgXDCoFGdK0VZp2QQFAUwUNEQXQDeu8cCkx9jKVjvQTFLDqdLCizFZnrghwcZ-5m4LeW8TdPY4pPxhIZfO92gN8402wpjGKAkOnRPMcY3KSZQB6YFVn1g-p2HIGP94jNqjV_vr1Z69ih-TAmp_</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Huang, Yindong</creator><creator>Zhao, Jing</creator><creator>Shu, Zheng</creator><creator>Zhu, Yalei</creator><creator>Liu, Jinlei</creator><creator>Dong, Wenpu</creator><creator>Wang, Xiaowei</creator><creator>Lü, Zhihui</creator><creator>Zhang, Dongwen</creator><creator>Yuan, Jianmin</creator><creator>Chen, Jing</creator><creator>Zhao, Zengxiu</creator><general>American Association for the Advancement of Science (AAAS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7974-7702</orcidid><orcidid>https://orcid.org/0000-0003-3885-9606</orcidid><orcidid>https://orcid.org/0000-0002-4151-6367</orcidid><orcidid>https://orcid.org/0000-0002-4173-3142</orcidid><orcidid>https://orcid.org/0000-0001-6912-5299</orcidid><orcidid>https://orcid.org/0000-0002-9315-0854</orcidid></search><sort><creationdate>20210101</creationdate><title>Ultrafast Hole Deformation Revealed by Molecular Attosecond Interferometry</title><author>Huang, Yindong ; Zhao, Jing ; Shu, Zheng ; Zhu, Yalei ; Liu, Jinlei ; Dong, Wenpu ; Wang, Xiaowei ; Lü, Zhihui ; Zhang, Dongwen ; Yuan, Jianmin ; Chen, Jing ; Zhao, Zengxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-ad62a9bd9e662166076845d6ada9f30dfbda85b5ca14cef7478ba8140920683c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yindong</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Shu, Zheng</creatorcontrib><creatorcontrib>Zhu, Yalei</creatorcontrib><creatorcontrib>Liu, Jinlei</creatorcontrib><creatorcontrib>Dong, Wenpu</creatorcontrib><creatorcontrib>Wang, Xiaowei</creatorcontrib><creatorcontrib>Lü, Zhihui</creatorcontrib><creatorcontrib>Zhang, Dongwen</creatorcontrib><creatorcontrib>Yuan, Jianmin</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Zhao, Zengxiu</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Ultrafast science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yindong</au><au>Zhao, Jing</au><au>Shu, Zheng</au><au>Zhu, Yalei</au><au>Liu, Jinlei</au><au>Dong, Wenpu</au><au>Wang, Xiaowei</au><au>Lü, Zhihui</au><au>Zhang, Dongwen</au><au>Yuan, Jianmin</au><au>Chen, Jing</au><au>Zhao, Zengxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Hole Deformation Revealed by Molecular Attosecond Interferometry</atitle><jtitle>Ultrafast science</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>2021</volume><issn>2765-8791</issn><eissn>2765-8791</eissn><abstract>Understanding the evolution of molecular electronic structures is the key to explore and control photochemical reactions and photobiological processes. Subjected to strong laser fields, electronic holes are formed upon ionization and evolve in the attosecond timescale. It is crucial to probe the electronic dynamics in real time with attosecond-temporal and atomic-spatial precision. Here, we present molecular attosecond interferometry that enables the in situ manipulation of holes in carbon dioxide molecules via the interferometry of the phase-locked electrons (propagating in opposite directions) of a laser-triggered rotational wave packet. The joint measurement on high-harmonic and terahertz spectroscopy (HATS) provides a unique tool for understanding electron dynamics from picoseconds to attoseconds. The optimum phases of two-color pulses for controlling the electron wave packet are precisely determined owing to the robust reference provided with the terahertz pulse generation. It is noteworthy that the contribution of HOMO-1 and HOMO-2 increases reflecting the deformation of the hole as the harmonic order increases. Our method can be applied to study hole dynamics of complex molecules and electron correlations during the strong-field process. The threefold control through molecular alignment, laser polarization, and the two-color pulse phase delay allows the precise manipulation of the transient hole paving the way for new advances in attochemistry.</abstract><pub>American Association for the Advancement of Science (AAAS)</pub><doi>10.34133/2021/9837107</doi><orcidid>https://orcid.org/0000-0001-7974-7702</orcidid><orcidid>https://orcid.org/0000-0003-3885-9606</orcidid><orcidid>https://orcid.org/0000-0002-4151-6367</orcidid><orcidid>https://orcid.org/0000-0002-4173-3142</orcidid><orcidid>https://orcid.org/0000-0001-6912-5299</orcidid><orcidid>https://orcid.org/0000-0002-9315-0854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2765-8791
ispartof Ultrafast science, 2021-01, Vol.2021
issn 2765-8791
2765-8791
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_91c5893995964abebb31b28e6b4e4de0
source EZB Electronic Journals Library
title Ultrafast Hole Deformation Revealed by Molecular Attosecond Interferometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Hole%20Deformation%20Revealed%20by%20Molecular%20Attosecond%20Interferometry&rft.jtitle=Ultrafast%20science&rft.au=Huang,%20Yindong&rft.date=2021-01-01&rft.volume=2021&rft.issn=2765-8791&rft.eissn=2765-8791&rft_id=info:doi/10.34133/2021/9837107&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_91c5893995964abebb31b28e6b4e4de0%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-ad62a9bd9e662166076845d6ada9f30dfbda85b5ca14cef7478ba8140920683c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true