Loading…
CBF-IDS: Addressing Class Imbalance Using CNN-BiLSTM with Focal Loss in Network Intrusion Detection System
The importance of network security has become increasingly prominent due to the rapid development of network technology. Network intrusion detection systems (NIDSs) play a crucial role in safeguarding networks from malicious attacks and intrusions. However, the issue of class imbalance in the datase...
Saved in:
Published in: | Applied sciences 2023-11, Vol.13 (21), p.11629 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093 |
container_end_page | |
container_issue | 21 |
container_start_page | 11629 |
container_title | Applied sciences |
container_volume | 13 |
creator | Peng, Haonan Wu, Chunming Xiao, Yanfeng |
description | The importance of network security has become increasingly prominent due to the rapid development of network technology. Network intrusion detection systems (NIDSs) play a crucial role in safeguarding networks from malicious attacks and intrusions. However, the issue of class imbalance in the dataset presents a significant challenge to NIDSs. In order to address this concern, this paper proposes a new NIDS called CBF-IDS, which combines convolutional neural networks (CNNs) and bidirectional long short-term memory networks (BiLSTMs) while employing the focal loss function. By utilizing CBF-IDS, spatial and temporal features can be extracted from network traffic. Moreover, during model training, CBF-IDS applies the focal loss function to give more weight to minority class samples, thereby mitigating the impact of class imbalance on model performance. In order to evaluate the effectiveness of CBF-IDS, experiments were conducted on three benchmark datasets: NSL-KDD, UNSW-NB15, and CIC-IDS2017. The experimental results demonstrate that CBF-IDS outperforms other classification models, achieving superior detection performance. |
doi_str_mv | 10.3390/app132111629 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_91cdb29b3c85439ba280dc20699d7238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772531042</galeid><doaj_id>oai_doaj_org_article_91cdb29b3c85439ba280dc20699d7238</doaj_id><sourcerecordid>A772531042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093</originalsourceid><addsrcrecordid>eNpNUcFu2zAMNYYNaNH11g8QsOvciZJsS7ul6dIayLJD2rNAy3KmzLEySUHRv69aD0PJA4nH9x4IsiiugF5zrug3PB6BMwComfpQnDPa1CUX0Hx8158VlzHuaQ4FXAI9L_bLm1XZ3m6_k0XfBxujm3ZkOWKMpD10OOJkLHmc0c2mvHHr7cNP8uTSb7LyBkey9pnqJrKx6cmHP6SdUjhF5ydya5M16bXbPsdkD5-LTwOO0V7-qxfF4-rHw_K-XP-6a5eLdWkErVM5KCEkYNeDhQoHKjoUVoBRneSsMjwPKsYaxY2SEsWAkkrGLTJRN91AFb8o2tm397jXx-AOGJ61R6ffAB92GkNyZrRagek7pjpuZCW46pBJ2htGa6X6hnGZvb7MXsfg_55sTHrvT2HK62smpQRo8lkz63pm7TCbumnwKaDJ2duDM36yg8v4omlYxYEKlgVfZ4EJ-XzBDv_XBKpfv6nff5O_AFiDjrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888117341</pqid></control><display><type>article</type><title>CBF-IDS: Addressing Class Imbalance Using CNN-BiLSTM with Focal Loss in Network Intrusion Detection System</title><source>Publicly Available Content Database</source><creator>Peng, Haonan ; Wu, Chunming ; Xiao, Yanfeng</creator><creatorcontrib>Peng, Haonan ; Wu, Chunming ; Xiao, Yanfeng</creatorcontrib><description>The importance of network security has become increasingly prominent due to the rapid development of network technology. Network intrusion detection systems (NIDSs) play a crucial role in safeguarding networks from malicious attacks and intrusions. However, the issue of class imbalance in the dataset presents a significant challenge to NIDSs. In order to address this concern, this paper proposes a new NIDS called CBF-IDS, which combines convolutional neural networks (CNNs) and bidirectional long short-term memory networks (BiLSTMs) while employing the focal loss function. By utilizing CBF-IDS, spatial and temporal features can be extracted from network traffic. Moreover, during model training, CBF-IDS applies the focal loss function to give more weight to minority class samples, thereby mitigating the impact of class imbalance on model performance. In order to evaluate the effectiveness of CBF-IDS, experiments were conducted on three benchmark datasets: NSL-KDD, UNSW-NB15, and CIC-IDS2017. The experimental results demonstrate that CBF-IDS outperforms other classification models, achieving superior detection performance.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app132111629</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Behavior ; bidirectional long short-term memory ; class imbalance ; Classification ; convolutional neural network ; Datasets ; Deep learning ; Detectors ; Feature selection ; focal loss ; intrusion detection system ; Intrusion detection systems ; Machine learning ; Neural networks ; Performance evaluation ; Safety and security measures</subject><ispartof>Applied sciences, 2023-11, Vol.13 (21), p.11629</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093</citedby><cites>FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093</cites><orcidid>0009-0007-6367-7667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2888117341/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2888117341?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Peng, Haonan</creatorcontrib><creatorcontrib>Wu, Chunming</creatorcontrib><creatorcontrib>Xiao, Yanfeng</creatorcontrib><title>CBF-IDS: Addressing Class Imbalance Using CNN-BiLSTM with Focal Loss in Network Intrusion Detection System</title><title>Applied sciences</title><description>The importance of network security has become increasingly prominent due to the rapid development of network technology. Network intrusion detection systems (NIDSs) play a crucial role in safeguarding networks from malicious attacks and intrusions. However, the issue of class imbalance in the dataset presents a significant challenge to NIDSs. In order to address this concern, this paper proposes a new NIDS called CBF-IDS, which combines convolutional neural networks (CNNs) and bidirectional long short-term memory networks (BiLSTMs) while employing the focal loss function. By utilizing CBF-IDS, spatial and temporal features can be extracted from network traffic. Moreover, during model training, CBF-IDS applies the focal loss function to give more weight to minority class samples, thereby mitigating the impact of class imbalance on model performance. In order to evaluate the effectiveness of CBF-IDS, experiments were conducted on three benchmark datasets: NSL-KDD, UNSW-NB15, and CIC-IDS2017. The experimental results demonstrate that CBF-IDS outperforms other classification models, achieving superior detection performance.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Behavior</subject><subject>bidirectional long short-term memory</subject><subject>class imbalance</subject><subject>Classification</subject><subject>convolutional neural network</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Feature selection</subject><subject>focal loss</subject><subject>intrusion detection system</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Safety and security measures</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu2zAMNYYNaNH11g8QsOvciZJsS7ul6dIayLJD2rNAy3KmzLEySUHRv69aD0PJA4nH9x4IsiiugF5zrug3PB6BMwComfpQnDPa1CUX0Hx8158VlzHuaQ4FXAI9L_bLm1XZ3m6_k0XfBxujm3ZkOWKMpD10OOJkLHmc0c2mvHHr7cNP8uTSb7LyBkey9pnqJrKx6cmHP6SdUjhF5ydya5M16bXbPsdkD5-LTwOO0V7-qxfF4-rHw_K-XP-6a5eLdWkErVM5KCEkYNeDhQoHKjoUVoBRneSsMjwPKsYaxY2SEsWAkkrGLTJRN91AFb8o2tm397jXx-AOGJ61R6ffAB92GkNyZrRagek7pjpuZCW46pBJ2htGa6X6hnGZvb7MXsfg_55sTHrvT2HK62smpQRo8lkz63pm7TCbumnwKaDJ2duDM36yg8v4omlYxYEKlgVfZ4EJ-XzBDv_XBKpfv6nff5O_AFiDjrw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Peng, Haonan</creator><creator>Wu, Chunming</creator><creator>Xiao, Yanfeng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-6367-7667</orcidid></search><sort><creationdate>20231101</creationdate><title>CBF-IDS: Addressing Class Imbalance Using CNN-BiLSTM with Focal Loss in Network Intrusion Detection System</title><author>Peng, Haonan ; Wu, Chunming ; Xiao, Yanfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Behavior</topic><topic>bidirectional long short-term memory</topic><topic>class imbalance</topic><topic>Classification</topic><topic>convolutional neural network</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Feature selection</topic><topic>focal loss</topic><topic>intrusion detection system</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Safety and security measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Haonan</creatorcontrib><creatorcontrib>Wu, Chunming</creatorcontrib><creatorcontrib>Xiao, Yanfeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Haonan</au><au>Wu, Chunming</au><au>Xiao, Yanfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CBF-IDS: Addressing Class Imbalance Using CNN-BiLSTM with Focal Loss in Network Intrusion Detection System</atitle><jtitle>Applied sciences</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>13</volume><issue>21</issue><spage>11629</spage><pages>11629-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The importance of network security has become increasingly prominent due to the rapid development of network technology. Network intrusion detection systems (NIDSs) play a crucial role in safeguarding networks from malicious attacks and intrusions. However, the issue of class imbalance in the dataset presents a significant challenge to NIDSs. In order to address this concern, this paper proposes a new NIDS called CBF-IDS, which combines convolutional neural networks (CNNs) and bidirectional long short-term memory networks (BiLSTMs) while employing the focal loss function. By utilizing CBF-IDS, spatial and temporal features can be extracted from network traffic. Moreover, during model training, CBF-IDS applies the focal loss function to give more weight to minority class samples, thereby mitigating the impact of class imbalance on model performance. In order to evaluate the effectiveness of CBF-IDS, experiments were conducted on three benchmark datasets: NSL-KDD, UNSW-NB15, and CIC-IDS2017. The experimental results demonstrate that CBF-IDS outperforms other classification models, achieving superior detection performance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app132111629</doi><orcidid>https://orcid.org/0009-0007-6367-7667</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-11, Vol.13 (21), p.11629 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_91cdb29b3c85439ba280dc20699d7238 |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms Behavior bidirectional long short-term memory class imbalance Classification convolutional neural network Datasets Deep learning Detectors Feature selection focal loss intrusion detection system Intrusion detection systems Machine learning Neural networks Performance evaluation Safety and security measures |
title | CBF-IDS: Addressing Class Imbalance Using CNN-BiLSTM with Focal Loss in Network Intrusion Detection System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CBF-IDS:%20Addressing%20Class%20Imbalance%20Using%20CNN-BiLSTM%20with%20Focal%20Loss%20in%20Network%20Intrusion%20Detection%20System&rft.jtitle=Applied%20sciences&rft.au=Peng,%20Haonan&rft.date=2023-11-01&rft.volume=13&rft.issue=21&rft.spage=11629&rft.pages=11629-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app132111629&rft_dat=%3Cgale_doaj_%3EA772531042%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888117341&rft_id=info:pmid/&rft_galeid=A772531042&rfr_iscdi=true |