Loading…

CBF-IDS: Addressing Class Imbalance Using CNN-BiLSTM with Focal Loss in Network Intrusion Detection System

The importance of network security has become increasingly prominent due to the rapid development of network technology. Network intrusion detection systems (NIDSs) play a crucial role in safeguarding networks from malicious attacks and intrusions. However, the issue of class imbalance in the datase...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-11, Vol.13 (21), p.11629
Main Authors: Peng, Haonan, Wu, Chunming, Xiao, Yanfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093
cites cdi_FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093
container_end_page
container_issue 21
container_start_page 11629
container_title Applied sciences
container_volume 13
creator Peng, Haonan
Wu, Chunming
Xiao, Yanfeng
description The importance of network security has become increasingly prominent due to the rapid development of network technology. Network intrusion detection systems (NIDSs) play a crucial role in safeguarding networks from malicious attacks and intrusions. However, the issue of class imbalance in the dataset presents a significant challenge to NIDSs. In order to address this concern, this paper proposes a new NIDS called CBF-IDS, which combines convolutional neural networks (CNNs) and bidirectional long short-term memory networks (BiLSTMs) while employing the focal loss function. By utilizing CBF-IDS, spatial and temporal features can be extracted from network traffic. Moreover, during model training, CBF-IDS applies the focal loss function to give more weight to minority class samples, thereby mitigating the impact of class imbalance on model performance. In order to evaluate the effectiveness of CBF-IDS, experiments were conducted on three benchmark datasets: NSL-KDD, UNSW-NB15, and CIC-IDS2017. The experimental results demonstrate that CBF-IDS outperforms other classification models, achieving superior detection performance.
doi_str_mv 10.3390/app132111629
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_91cdb29b3c85439ba280dc20699d7238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772531042</galeid><doaj_id>oai_doaj_org_article_91cdb29b3c85439ba280dc20699d7238</doaj_id><sourcerecordid>A772531042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093</originalsourceid><addsrcrecordid>eNpNUcFu2zAMNYYNaNH11g8QsOvciZJsS7ul6dIayLJD2rNAy3KmzLEySUHRv69aD0PJA4nH9x4IsiiugF5zrug3PB6BMwComfpQnDPa1CUX0Hx8158VlzHuaQ4FXAI9L_bLm1XZ3m6_k0XfBxujm3ZkOWKMpD10OOJkLHmc0c2mvHHr7cNP8uTSb7LyBkey9pnqJrKx6cmHP6SdUjhF5ydya5M16bXbPsdkD5-LTwOO0V7-qxfF4-rHw_K-XP-6a5eLdWkErVM5KCEkYNeDhQoHKjoUVoBRneSsMjwPKsYaxY2SEsWAkkrGLTJRN91AFb8o2tm397jXx-AOGJ61R6ffAB92GkNyZrRagek7pjpuZCW46pBJ2htGa6X6hnGZvb7MXsfg_55sTHrvT2HK62smpQRo8lkz63pm7TCbumnwKaDJ2duDM36yg8v4omlYxYEKlgVfZ4EJ-XzBDv_XBKpfv6nff5O_AFiDjrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888117341</pqid></control><display><type>article</type><title>CBF-IDS: Addressing Class Imbalance Using CNN-BiLSTM with Focal Loss in Network Intrusion Detection System</title><source>Publicly Available Content Database</source><creator>Peng, Haonan ; Wu, Chunming ; Xiao, Yanfeng</creator><creatorcontrib>Peng, Haonan ; Wu, Chunming ; Xiao, Yanfeng</creatorcontrib><description>The importance of network security has become increasingly prominent due to the rapid development of network technology. Network intrusion detection systems (NIDSs) play a crucial role in safeguarding networks from malicious attacks and intrusions. However, the issue of class imbalance in the dataset presents a significant challenge to NIDSs. In order to address this concern, this paper proposes a new NIDS called CBF-IDS, which combines convolutional neural networks (CNNs) and bidirectional long short-term memory networks (BiLSTMs) while employing the focal loss function. By utilizing CBF-IDS, spatial and temporal features can be extracted from network traffic. Moreover, during model training, CBF-IDS applies the focal loss function to give more weight to minority class samples, thereby mitigating the impact of class imbalance on model performance. In order to evaluate the effectiveness of CBF-IDS, experiments were conducted on three benchmark datasets: NSL-KDD, UNSW-NB15, and CIC-IDS2017. The experimental results demonstrate that CBF-IDS outperforms other classification models, achieving superior detection performance.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app132111629</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Behavior ; bidirectional long short-term memory ; class imbalance ; Classification ; convolutional neural network ; Datasets ; Deep learning ; Detectors ; Feature selection ; focal loss ; intrusion detection system ; Intrusion detection systems ; Machine learning ; Neural networks ; Performance evaluation ; Safety and security measures</subject><ispartof>Applied sciences, 2023-11, Vol.13 (21), p.11629</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093</citedby><cites>FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093</cites><orcidid>0009-0007-6367-7667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2888117341/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2888117341?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Peng, Haonan</creatorcontrib><creatorcontrib>Wu, Chunming</creatorcontrib><creatorcontrib>Xiao, Yanfeng</creatorcontrib><title>CBF-IDS: Addressing Class Imbalance Using CNN-BiLSTM with Focal Loss in Network Intrusion Detection System</title><title>Applied sciences</title><description>The importance of network security has become increasingly prominent due to the rapid development of network technology. Network intrusion detection systems (NIDSs) play a crucial role in safeguarding networks from malicious attacks and intrusions. However, the issue of class imbalance in the dataset presents a significant challenge to NIDSs. In order to address this concern, this paper proposes a new NIDS called CBF-IDS, which combines convolutional neural networks (CNNs) and bidirectional long short-term memory networks (BiLSTMs) while employing the focal loss function. By utilizing CBF-IDS, spatial and temporal features can be extracted from network traffic. Moreover, during model training, CBF-IDS applies the focal loss function to give more weight to minority class samples, thereby mitigating the impact of class imbalance on model performance. In order to evaluate the effectiveness of CBF-IDS, experiments were conducted on three benchmark datasets: NSL-KDD, UNSW-NB15, and CIC-IDS2017. The experimental results demonstrate that CBF-IDS outperforms other classification models, achieving superior detection performance.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Behavior</subject><subject>bidirectional long short-term memory</subject><subject>class imbalance</subject><subject>Classification</subject><subject>convolutional neural network</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Feature selection</subject><subject>focal loss</subject><subject>intrusion detection system</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Safety and security measures</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu2zAMNYYNaNH11g8QsOvciZJsS7ul6dIayLJD2rNAy3KmzLEySUHRv69aD0PJA4nH9x4IsiiugF5zrug3PB6BMwComfpQnDPa1CUX0Hx8158VlzHuaQ4FXAI9L_bLm1XZ3m6_k0XfBxujm3ZkOWKMpD10OOJkLHmc0c2mvHHr7cNP8uTSb7LyBkey9pnqJrKx6cmHP6SdUjhF5ydya5M16bXbPsdkD5-LTwOO0V7-qxfF4-rHw_K-XP-6a5eLdWkErVM5KCEkYNeDhQoHKjoUVoBRneSsMjwPKsYaxY2SEsWAkkrGLTJRN91AFb8o2tm397jXx-AOGJ61R6ffAB92GkNyZrRagek7pjpuZCW46pBJ2htGa6X6hnGZvb7MXsfg_55sTHrvT2HK62smpQRo8lkz63pm7TCbumnwKaDJ2duDM36yg8v4omlYxYEKlgVfZ4EJ-XzBDv_XBKpfv6nff5O_AFiDjrw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Peng, Haonan</creator><creator>Wu, Chunming</creator><creator>Xiao, Yanfeng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-6367-7667</orcidid></search><sort><creationdate>20231101</creationdate><title>CBF-IDS: Addressing Class Imbalance Using CNN-BiLSTM with Focal Loss in Network Intrusion Detection System</title><author>Peng, Haonan ; Wu, Chunming ; Xiao, Yanfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Behavior</topic><topic>bidirectional long short-term memory</topic><topic>class imbalance</topic><topic>Classification</topic><topic>convolutional neural network</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Feature selection</topic><topic>focal loss</topic><topic>intrusion detection system</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Safety and security measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Haonan</creatorcontrib><creatorcontrib>Wu, Chunming</creatorcontrib><creatorcontrib>Xiao, Yanfeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Haonan</au><au>Wu, Chunming</au><au>Xiao, Yanfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CBF-IDS: Addressing Class Imbalance Using CNN-BiLSTM with Focal Loss in Network Intrusion Detection System</atitle><jtitle>Applied sciences</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>13</volume><issue>21</issue><spage>11629</spage><pages>11629-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The importance of network security has become increasingly prominent due to the rapid development of network technology. Network intrusion detection systems (NIDSs) play a crucial role in safeguarding networks from malicious attacks and intrusions. However, the issue of class imbalance in the dataset presents a significant challenge to NIDSs. In order to address this concern, this paper proposes a new NIDS called CBF-IDS, which combines convolutional neural networks (CNNs) and bidirectional long short-term memory networks (BiLSTMs) while employing the focal loss function. By utilizing CBF-IDS, spatial and temporal features can be extracted from network traffic. Moreover, during model training, CBF-IDS applies the focal loss function to give more weight to minority class samples, thereby mitigating the impact of class imbalance on model performance. In order to evaluate the effectiveness of CBF-IDS, experiments were conducted on three benchmark datasets: NSL-KDD, UNSW-NB15, and CIC-IDS2017. The experimental results demonstrate that CBF-IDS outperforms other classification models, achieving superior detection performance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app132111629</doi><orcidid>https://orcid.org/0009-0007-6367-7667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-11, Vol.13 (21), p.11629
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_91cdb29b3c85439ba280dc20699d7238
source Publicly Available Content Database
subjects Accuracy
Algorithms
Behavior
bidirectional long short-term memory
class imbalance
Classification
convolutional neural network
Datasets
Deep learning
Detectors
Feature selection
focal loss
intrusion detection system
Intrusion detection systems
Machine learning
Neural networks
Performance evaluation
Safety and security measures
title CBF-IDS: Addressing Class Imbalance Using CNN-BiLSTM with Focal Loss in Network Intrusion Detection System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CBF-IDS:%20Addressing%20Class%20Imbalance%20Using%20CNN-BiLSTM%20with%20Focal%20Loss%20in%20Network%20Intrusion%20Detection%20System&rft.jtitle=Applied%20sciences&rft.au=Peng,%20Haonan&rft.date=2023-11-01&rft.volume=13&rft.issue=21&rft.spage=11629&rft.pages=11629-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app132111629&rft_dat=%3Cgale_doaj_%3EA772531042%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-f94481abd1e15af04ba4e41c9b8325c3bd1522793c988a4fa80823ea2467bf093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888117341&rft_id=info:pmid/&rft_galeid=A772531042&rfr_iscdi=true