Loading…

Green chromatographic methods for determination of co-formulated lidocaine hydrochloride and miconazole nitrate along with an endocrine disruptor preservative and potential impurity

Recently, green analytical chemistry (GAC) is a key issue towards the idea of sustainability, the analytical community is focused on developing analytical methods that incorporate green chemistry principles to minimize adverse impacts on the environment and humans. Herein, we present 2 sustainable,...

Full description

Saved in:
Bibliographic Details
Published in:BMC chemistry 2023-11, Vol.17 (1), p.151-151, Article 151
Main Authors: Ashour, Esraa S., Hegazy, Maha A., Al-Alamein, Amal M. Abou, El-Sayed, Ghada M., Ghoniem, Nermine S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, green analytical chemistry (GAC) is a key issue towards the idea of sustainability, the analytical community is focused on developing analytical methods that incorporate green chemistry principles to minimize adverse impacts on the environment and humans. Herein, we present 2 sustainable, selective, and validated chromatographic methods. Initially, lidocaine hydrochloride (LDC) and miconazole nitrate (MIC) with two preservatives; methyl paraben (MTP) and saccharin sodium (SAC) were chromatographed via TLC–densitometric method which employed ethyl acetate: methanol: formic acid (9:1:0.1, by volume) as the mobile phase with UV detection at 220.0 nm, good correlation was obtained in the range of 0.3–3.0 µg/band for MIC and LDC. Following that, RP-HPLC was successfully applied for separating quinary mixture of LDC, MIC, MTP, SAC along with LDC impurity; dimethyl aniline (DMA) using C18 column, and a gradient green mobile phase composed of methanol and phosphate buffer (pH 6.0) in different ratios with a flow rate 1.5 mL/min and UV detection at 210.0 nm, linearity ranges from 1.00 to 100.00 µg/mL for MIC, 2.00–100.00 µg/mL for LDC and 1.00–-20.00 µg/mL for MTP and DMA. No records to date regarding the determination of the two drugs, besides MTP and DMA. The proposed methods were validated according to the ICH guidelines and applied successfully to the analysis of the compounds. The methods' results were statistically compared to those obtained by applying the reported one, indicating no significant difference regarding both accuracy and precision. The methods' greenness profiles have been assessed and compared with those of the reported method using different assessment tools. Graphical Abstract
ISSN:2661-801X
2661-801X
DOI:10.1186/s13065-023-01065-3