Loading…
Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight
This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the format...
Saved in:
Published in: | International journal of aerospace engineering 2019-01, Vol.2019 (2019), p.1-18 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the formation-tracking problem for each quadrotor. The RNN-based MPC is proposed for each subsystem, where the RNN is introduced as the predictive model in MPC. And to improve the modeling accuracy, an adaptive updating law is developed to tune weights online for the RNN. Besides, the adaptive differential evolution (DE) algorithm is utilized to solve the optimization problem for MPC. Furthermore, the closed-loop stability is analyzed; meanwhile, the convergence of the DE algorithm is discussed as well. Finally, some simulation examples are provided to illustrate the validity of the proposed control structure. |
---|---|
ISSN: | 1687-5966 1687-5974 |
DOI: | 10.1155/2019/7272387 |