Loading…

Using the software DeepWings© to classify honey bees across europe through wing geometric morphometrics

DeepWings© is a software that uses machine learning to automatically classify honey bee subspecies by wing geometric morphometrics. Here, we tested the five subspecies classifier (A. m. carnica, Apis mellifera caucasia, A. m. iberiensis, Apis mellifera ligustica, and A. m. mellifera) of DeepWings© o...

Full description

Saved in:
Bibliographic Details
Published in:Insects (Basel, Switzerland) Switzerland), 2022-12, Vol.13 (12), p.1132
Main Authors: Garcia, Carlos A.Y., Soares Rodrigues, Pedro João, Tofilski, Adam, Elen, Dylan, McCormack, Grace P., Oleksa, Andrzej, Henriques, Dora, Ilyasov, Rustem, Kartashev, Anatoly, Bargain, Christian, Fried, Balser, Pinto, Maria Alice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753
cites cdi_FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753
container_end_page
container_issue 12
container_start_page 1132
container_title Insects (Basel, Switzerland)
container_volume 13
creator Garcia, Carlos A.Y.
Soares Rodrigues, Pedro João
Tofilski, Adam
Elen, Dylan
McCormack, Grace P.
Oleksa, Andrzej
Henriques, Dora
Ilyasov, Rustem
Kartashev, Anatoly
Bargain, Christian
Fried, Balser
Pinto, Maria Alice
description DeepWings© is a software that uses machine learning to automatically classify honey bee subspecies by wing geometric morphometrics. Here, we tested the five subspecies classifier (A. m. carnica, Apis mellifera caucasia, A. m. iberiensis, Apis mellifera ligustica, and A. m. mellifera) of DeepWings© on 14,816 wing images with variable quality and acquired by different beekeepers and researchers. These images represented 2601 colonies from the native ranges of the M-lineage A. m. iberiensis and A. m. mellifera, and the C-lineage A. m. carnica. In the A. m. iberiensis range, 92.6% of the colonies matched this subspecies, with a high median probability (0.919). In the Azores, where the Iberian subspecies was historically introduced, a lower proportion (85.7%) and probability (0.842) were observed. In the A. m mellifera range, only 41.1 % of the colonies matched this subspecies, which is compatible with a history of C-derived introgression. Yet, these colonies were classified with the highest probability (0.994) of the three subspecies. In the A. m. carnica range, 88.3% of the colonies matched this subspecies, with a probability of 0.984. The association between wing and molecular markers, assessed for 1214 colonies from the M-lineage range, was highly significant but not strong (r = 0.31, p < 0.0001). The agreement between the markers was influenced by C-derived introgression, with the best results obtained for colonies with high genetic integrity. This study indicates the good performance of DeepWings© on a realistic wing image dataset.
doi_str_mv 10.3390/insects13121132
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_91f7b96e963046039d4de7694fb6decd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745719900</galeid><doaj_id>oai_doaj_org_article_91f7b96e963046039d4de7694fb6decd</doaj_id><sourcerecordid>A745719900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753</originalsourceid><addsrcrecordid>eNpdks1u3CAQx62qVRNtcu6tQuqll03AfJlLpSjpR6RIuTTqEWE82Kxs44KdaB-pr9EnK5vdRkngAAy_-TPDTFF8IPiMUoXP_ZjAzolQUhJCyzfFcYklXzPG8dtn-6PiNKUNzkNkUFTviyMqOOeY0eOiu0t-bNHcAUrBzQ8mAroCmH5la_r7B80B2d6k5N0WdWGELaoBEjI2hpQQLDFMkL1jWNoOPeykWggDzNFbNIQ4dYdDOineOdMnOD2sq-Lu29eflz_WN7ffry8vbtaWczKvjQUCTvCyMUrUlhMBkklbcQwVa6yU2EgqKFTcibJkRrpK1pVgJWWAieR0VVzvdZtgNnqKfjBxq4Px-tEQYqtNnL3tQSviZK0EKEExE5iqhjUghWKuFg3YJmt92WtNSz1AY2Gco-lfiL68GX2n23CvlayY5CILfD4IxPB7gTTrwScLfW9GCEvSpeRVLh2VZUY_vUI3YYlj_qodJWTJdiGuirM91ZqcgB9dyO_aPBsYvM31cT7bLyTjkiiFdw7ne4fHgkVwT9ETrHddpF91Ufb4-DzpJ_5_z2QA7YFojZl0hHufZpOyIFGVlopi-g8cKtAy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756724460</pqid></control><display><type>article</type><title>Using the software DeepWings© to classify honey bees across europe through wing geometric morphometrics</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Garcia, Carlos A.Y. ; Soares Rodrigues, Pedro João ; Tofilski, Adam ; Elen, Dylan ; McCormack, Grace P. ; Oleksa, Andrzej ; Henriques, Dora ; Ilyasov, Rustem ; Kartashev, Anatoly ; Bargain, Christian ; Fried, Balser ; Pinto, Maria Alice</creator><creatorcontrib>Garcia, Carlos A.Y. ; Soares Rodrigues, Pedro João ; Tofilski, Adam ; Elen, Dylan ; McCormack, Grace P. ; Oleksa, Andrzej ; Henriques, Dora ; Ilyasov, Rustem ; Kartashev, Anatoly ; Bargain, Christian ; Fried, Balser ; Pinto, Maria Alice</creatorcontrib><description>DeepWings© is a software that uses machine learning to automatically classify honey bee subspecies by wing geometric morphometrics. Here, we tested the five subspecies classifier (A. m. carnica, Apis mellifera caucasia, A. m. iberiensis, Apis mellifera ligustica, and A. m. mellifera) of DeepWings© on 14,816 wing images with variable quality and acquired by different beekeepers and researchers. These images represented 2601 colonies from the native ranges of the M-lineage A. m. iberiensis and A. m. mellifera, and the C-lineage A. m. carnica. In the A. m. iberiensis range, 92.6% of the colonies matched this subspecies, with a high median probability (0.919). In the Azores, where the Iberian subspecies was historically introduced, a lower proportion (85.7%) and probability (0.842) were observed. In the A. m mellifera range, only 41.1 % of the colonies matched this subspecies, which is compatible with a history of C-derived introgression. Yet, these colonies were classified with the highest probability (0.994) of the three subspecies. In the A. m. carnica range, 88.3% of the colonies matched this subspecies, with a probability of 0.984. The association between wing and molecular markers, assessed for 1214 colonies from the M-lineage range, was highly significant but not strong (r = 0.31, p &lt; 0.0001). The agreement between the markers was influenced by C-derived introgression, with the best results obtained for colonies with high genetic integrity. This study indicates the good performance of DeepWings© on a realistic wing image dataset.</description><identifier>ISSN: 2075-4450</identifier><identifier>EISSN: 2075-4450</identifier><identifier>DOI: 10.3390/insects13121132</identifier><identifier>PMID: 36555043</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>Apis mellifera ; Apis mellifera subspecies ; Beekeeping ; Bees ; Biological research ; Biology, Experimental ; Breeding ; Classification ; Colonies ; Computer programs ; Discriminant analysis ; Honey ; honey bee classification ; honey bee conservation ; Honeybee ; Identification ; Identification and classification ; Image acquisition ; Image processing ; Image quality ; introgression ; Machine learning ; Morphometrics (Biology) ; Physiological aspects ; Pollution ; Probability ; Software ; Venation ; wing geometric morphometrics</subject><ispartof>Insects (Basel, Switzerland), 2022-12, Vol.13 (12), p.1132</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753</citedby><cites>FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753</cites><orcidid>0000-0001-7530-682X ; 0000-0002-0555-2029 ; 0000-0001-9663-8399 ; 0000-0002-6916-3647 ; 0000-0003-4960-5185 ; 0000-0002-3898-7029 ; 0000-0003-2445-4739 ; 0000-0001-5881-7150 ; 0000-0002-0414-8075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756724460/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756724460?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36555043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Carlos A.Y.</creatorcontrib><creatorcontrib>Soares Rodrigues, Pedro João</creatorcontrib><creatorcontrib>Tofilski, Adam</creatorcontrib><creatorcontrib>Elen, Dylan</creatorcontrib><creatorcontrib>McCormack, Grace P.</creatorcontrib><creatorcontrib>Oleksa, Andrzej</creatorcontrib><creatorcontrib>Henriques, Dora</creatorcontrib><creatorcontrib>Ilyasov, Rustem</creatorcontrib><creatorcontrib>Kartashev, Anatoly</creatorcontrib><creatorcontrib>Bargain, Christian</creatorcontrib><creatorcontrib>Fried, Balser</creatorcontrib><creatorcontrib>Pinto, Maria Alice</creatorcontrib><title>Using the software DeepWings© to classify honey bees across europe through wing geometric morphometrics</title><title>Insects (Basel, Switzerland)</title><addtitle>Insects</addtitle><description>DeepWings© is a software that uses machine learning to automatically classify honey bee subspecies by wing geometric morphometrics. Here, we tested the five subspecies classifier (A. m. carnica, Apis mellifera caucasia, A. m. iberiensis, Apis mellifera ligustica, and A. m. mellifera) of DeepWings© on 14,816 wing images with variable quality and acquired by different beekeepers and researchers. These images represented 2601 colonies from the native ranges of the M-lineage A. m. iberiensis and A. m. mellifera, and the C-lineage A. m. carnica. In the A. m. iberiensis range, 92.6% of the colonies matched this subspecies, with a high median probability (0.919). In the Azores, where the Iberian subspecies was historically introduced, a lower proportion (85.7%) and probability (0.842) were observed. In the A. m mellifera range, only 41.1 % of the colonies matched this subspecies, which is compatible with a history of C-derived introgression. Yet, these colonies were classified with the highest probability (0.994) of the three subspecies. In the A. m. carnica range, 88.3% of the colonies matched this subspecies, with a probability of 0.984. The association between wing and molecular markers, assessed for 1214 colonies from the M-lineage range, was highly significant but not strong (r = 0.31, p &lt; 0.0001). The agreement between the markers was influenced by C-derived introgression, with the best results obtained for colonies with high genetic integrity. This study indicates the good performance of DeepWings© on a realistic wing image dataset.</description><subject>Apis mellifera</subject><subject>Apis mellifera subspecies</subject><subject>Beekeeping</subject><subject>Bees</subject><subject>Biological research</subject><subject>Biology, Experimental</subject><subject>Breeding</subject><subject>Classification</subject><subject>Colonies</subject><subject>Computer programs</subject><subject>Discriminant analysis</subject><subject>Honey</subject><subject>honey bee classification</subject><subject>honey bee conservation</subject><subject>Honeybee</subject><subject>Identification</subject><subject>Identification and classification</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Image quality</subject><subject>introgression</subject><subject>Machine learning</subject><subject>Morphometrics (Biology)</subject><subject>Physiological aspects</subject><subject>Pollution</subject><subject>Probability</subject><subject>Software</subject><subject>Venation</subject><subject>wing geometric morphometrics</subject><issn>2075-4450</issn><issn>2075-4450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1u3CAQx62qVRNtcu6tQuqll03AfJlLpSjpR6RIuTTqEWE82Kxs44KdaB-pr9EnK5vdRkngAAy_-TPDTFF8IPiMUoXP_ZjAzolQUhJCyzfFcYklXzPG8dtn-6PiNKUNzkNkUFTviyMqOOeY0eOiu0t-bNHcAUrBzQ8mAroCmH5la_r7B80B2d6k5N0WdWGELaoBEjI2hpQQLDFMkL1jWNoOPeykWggDzNFbNIQ4dYdDOineOdMnOD2sq-Lu29eflz_WN7ffry8vbtaWczKvjQUCTvCyMUrUlhMBkklbcQwVa6yU2EgqKFTcibJkRrpK1pVgJWWAieR0VVzvdZtgNnqKfjBxq4Px-tEQYqtNnL3tQSviZK0EKEExE5iqhjUghWKuFg3YJmt92WtNSz1AY2Gco-lfiL68GX2n23CvlayY5CILfD4IxPB7gTTrwScLfW9GCEvSpeRVLh2VZUY_vUI3YYlj_qodJWTJdiGuirM91ZqcgB9dyO_aPBsYvM31cT7bLyTjkiiFdw7ne4fHgkVwT9ETrHddpF91Ufb4-DzpJ_5_z2QA7YFojZl0hHufZpOyIFGVlopi-g8cKtAy</recordid><startdate>20221208</startdate><enddate>20221208</enddate><creator>Garcia, Carlos A.Y.</creator><creator>Soares Rodrigues, Pedro João</creator><creator>Tofilski, Adam</creator><creator>Elen, Dylan</creator><creator>McCormack, Grace P.</creator><creator>Oleksa, Andrzej</creator><creator>Henriques, Dora</creator><creator>Ilyasov, Rustem</creator><creator>Kartashev, Anatoly</creator><creator>Bargain, Christian</creator><creator>Fried, Balser</creator><creator>Pinto, Maria Alice</creator><general>MDPI</general><general>MDPI AG</general><scope>RCLKO</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7530-682X</orcidid><orcidid>https://orcid.org/0000-0002-0555-2029</orcidid><orcidid>https://orcid.org/0000-0001-9663-8399</orcidid><orcidid>https://orcid.org/0000-0002-6916-3647</orcidid><orcidid>https://orcid.org/0000-0003-4960-5185</orcidid><orcidid>https://orcid.org/0000-0002-3898-7029</orcidid><orcidid>https://orcid.org/0000-0003-2445-4739</orcidid><orcidid>https://orcid.org/0000-0001-5881-7150</orcidid><orcidid>https://orcid.org/0000-0002-0414-8075</orcidid></search><sort><creationdate>20221208</creationdate><title>Using the software DeepWings© to classify honey bees across europe through wing geometric morphometrics</title><author>Garcia, Carlos A.Y. ; Soares Rodrigues, Pedro João ; Tofilski, Adam ; Elen, Dylan ; McCormack, Grace P. ; Oleksa, Andrzej ; Henriques, Dora ; Ilyasov, Rustem ; Kartashev, Anatoly ; Bargain, Christian ; Fried, Balser ; Pinto, Maria Alice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apis mellifera</topic><topic>Apis mellifera subspecies</topic><topic>Beekeeping</topic><topic>Bees</topic><topic>Biological research</topic><topic>Biology, Experimental</topic><topic>Breeding</topic><topic>Classification</topic><topic>Colonies</topic><topic>Computer programs</topic><topic>Discriminant analysis</topic><topic>Honey</topic><topic>honey bee classification</topic><topic>honey bee conservation</topic><topic>Honeybee</topic><topic>Identification</topic><topic>Identification and classification</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Image quality</topic><topic>introgression</topic><topic>Machine learning</topic><topic>Morphometrics (Biology)</topic><topic>Physiological aspects</topic><topic>Pollution</topic><topic>Probability</topic><topic>Software</topic><topic>Venation</topic><topic>wing geometric morphometrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Carlos A.Y.</creatorcontrib><creatorcontrib>Soares Rodrigues, Pedro João</creatorcontrib><creatorcontrib>Tofilski, Adam</creatorcontrib><creatorcontrib>Elen, Dylan</creatorcontrib><creatorcontrib>McCormack, Grace P.</creatorcontrib><creatorcontrib>Oleksa, Andrzej</creatorcontrib><creatorcontrib>Henriques, Dora</creatorcontrib><creatorcontrib>Ilyasov, Rustem</creatorcontrib><creatorcontrib>Kartashev, Anatoly</creatorcontrib><creatorcontrib>Bargain, Christian</creatorcontrib><creatorcontrib>Fried, Balser</creatorcontrib><creatorcontrib>Pinto, Maria Alice</creatorcontrib><collection>RCAAP open access repository</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Insects (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Carlos A.Y.</au><au>Soares Rodrigues, Pedro João</au><au>Tofilski, Adam</au><au>Elen, Dylan</au><au>McCormack, Grace P.</au><au>Oleksa, Andrzej</au><au>Henriques, Dora</au><au>Ilyasov, Rustem</au><au>Kartashev, Anatoly</au><au>Bargain, Christian</au><au>Fried, Balser</au><au>Pinto, Maria Alice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the software DeepWings© to classify honey bees across europe through wing geometric morphometrics</atitle><jtitle>Insects (Basel, Switzerland)</jtitle><addtitle>Insects</addtitle><date>2022-12-08</date><risdate>2022</risdate><volume>13</volume><issue>12</issue><spage>1132</spage><pages>1132-</pages><issn>2075-4450</issn><eissn>2075-4450</eissn><abstract>DeepWings© is a software that uses machine learning to automatically classify honey bee subspecies by wing geometric morphometrics. Here, we tested the five subspecies classifier (A. m. carnica, Apis mellifera caucasia, A. m. iberiensis, Apis mellifera ligustica, and A. m. mellifera) of DeepWings© on 14,816 wing images with variable quality and acquired by different beekeepers and researchers. These images represented 2601 colonies from the native ranges of the M-lineage A. m. iberiensis and A. m. mellifera, and the C-lineage A. m. carnica. In the A. m. iberiensis range, 92.6% of the colonies matched this subspecies, with a high median probability (0.919). In the Azores, where the Iberian subspecies was historically introduced, a lower proportion (85.7%) and probability (0.842) were observed. In the A. m mellifera range, only 41.1 % of the colonies matched this subspecies, which is compatible with a history of C-derived introgression. Yet, these colonies were classified with the highest probability (0.994) of the three subspecies. In the A. m. carnica range, 88.3% of the colonies matched this subspecies, with a probability of 0.984. The association between wing and molecular markers, assessed for 1214 colonies from the M-lineage range, was highly significant but not strong (r = 0.31, p &lt; 0.0001). The agreement between the markers was influenced by C-derived introgression, with the best results obtained for colonies with high genetic integrity. This study indicates the good performance of DeepWings© on a realistic wing image dataset.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>36555043</pmid><doi>10.3390/insects13121132</doi><orcidid>https://orcid.org/0000-0001-7530-682X</orcidid><orcidid>https://orcid.org/0000-0002-0555-2029</orcidid><orcidid>https://orcid.org/0000-0001-9663-8399</orcidid><orcidid>https://orcid.org/0000-0002-6916-3647</orcidid><orcidid>https://orcid.org/0000-0003-4960-5185</orcidid><orcidid>https://orcid.org/0000-0002-3898-7029</orcidid><orcidid>https://orcid.org/0000-0003-2445-4739</orcidid><orcidid>https://orcid.org/0000-0001-5881-7150</orcidid><orcidid>https://orcid.org/0000-0002-0414-8075</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4450
ispartof Insects (Basel, Switzerland), 2022-12, Vol.13 (12), p.1132
issn 2075-4450
2075-4450
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_91f7b96e963046039d4de7694fb6decd
source NCBI_PubMed Central(免费); Publicly Available Content Database
subjects Apis mellifera
Apis mellifera subspecies
Beekeeping
Bees
Biological research
Biology, Experimental
Breeding
Classification
Colonies
Computer programs
Discriminant analysis
Honey
honey bee classification
honey bee conservation
Honeybee
Identification
Identification and classification
Image acquisition
Image processing
Image quality
introgression
Machine learning
Morphometrics (Biology)
Physiological aspects
Pollution
Probability
Software
Venation
wing geometric morphometrics
title Using the software DeepWings© to classify honey bees across europe through wing geometric morphometrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20software%20DeepWings%C2%A9%20to%20classify%20honey%20bees%20across%20europe%20through%20wing%20geometric%20morphometrics&rft.jtitle=Insects%20(Basel,%20Switzerland)&rft.au=Garcia,%20Carlos%20A.Y.&rft.date=2022-12-08&rft.volume=13&rft.issue=12&rft.spage=1132&rft.pages=1132-&rft.issn=2075-4450&rft.eissn=2075-4450&rft_id=info:doi/10.3390/insects13121132&rft_dat=%3Cgale_doaj_%3EA745719900%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756724460&rft_id=info:pmid/36555043&rft_galeid=A745719900&rfr_iscdi=true