Loading…
Using the software DeepWings© to classify honey bees across europe through wing geometric morphometrics
DeepWings© is a software that uses machine learning to automatically classify honey bee subspecies by wing geometric morphometrics. Here, we tested the five subspecies classifier (A. m. carnica, Apis mellifera caucasia, A. m. iberiensis, Apis mellifera ligustica, and A. m. mellifera) of DeepWings© o...
Saved in:
Published in: | Insects (Basel, Switzerland) Switzerland), 2022-12, Vol.13 (12), p.1132 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753 |
---|---|
cites | cdi_FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753 |
container_end_page | |
container_issue | 12 |
container_start_page | 1132 |
container_title | Insects (Basel, Switzerland) |
container_volume | 13 |
creator | Garcia, Carlos A.Y. Soares Rodrigues, Pedro João Tofilski, Adam Elen, Dylan McCormack, Grace P. Oleksa, Andrzej Henriques, Dora Ilyasov, Rustem Kartashev, Anatoly Bargain, Christian Fried, Balser Pinto, Maria Alice |
description | DeepWings© is a software that uses machine learning to automatically classify honey bee subspecies by wing geometric morphometrics. Here, we tested the five subspecies classifier (A. m. carnica, Apis mellifera caucasia, A. m. iberiensis, Apis mellifera ligustica, and A. m. mellifera) of DeepWings© on 14,816 wing images with variable quality and acquired by different beekeepers and researchers. These images represented 2601 colonies from the native ranges of the M-lineage A. m. iberiensis and A. m. mellifera, and the C-lineage A. m. carnica. In the A. m. iberiensis range, 92.6% of the colonies matched this subspecies, with a high median probability (0.919). In the Azores, where the Iberian subspecies was historically introduced, a lower proportion (85.7%) and probability (0.842) were observed. In the A. m mellifera range, only 41.1 % of the colonies matched this subspecies, which is compatible with a history of C-derived introgression. Yet, these colonies were classified with the highest probability (0.994) of the three subspecies. In the A. m. carnica range, 88.3% of the colonies matched this subspecies, with a probability of 0.984. The association between wing and molecular markers, assessed for 1214 colonies from the M-lineage range, was highly significant but not strong (r = 0.31, p < 0.0001). The agreement between the markers was influenced by C-derived introgression, with the best results obtained for colonies with high genetic integrity. This study indicates the good performance of DeepWings© on a realistic wing image dataset. |
doi_str_mv | 10.3390/insects13121132 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_91f7b96e963046039d4de7694fb6decd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745719900</galeid><doaj_id>oai_doaj_org_article_91f7b96e963046039d4de7694fb6decd</doaj_id><sourcerecordid>A745719900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753</originalsourceid><addsrcrecordid>eNpdks1u3CAQx62qVRNtcu6tQuqll03AfJlLpSjpR6RIuTTqEWE82Kxs44KdaB-pr9EnK5vdRkngAAy_-TPDTFF8IPiMUoXP_ZjAzolQUhJCyzfFcYklXzPG8dtn-6PiNKUNzkNkUFTviyMqOOeY0eOiu0t-bNHcAUrBzQ8mAroCmH5la_r7B80B2d6k5N0WdWGELaoBEjI2hpQQLDFMkL1jWNoOPeykWggDzNFbNIQ4dYdDOineOdMnOD2sq-Lu29eflz_WN7ffry8vbtaWczKvjQUCTvCyMUrUlhMBkklbcQwVa6yU2EgqKFTcibJkRrpK1pVgJWWAieR0VVzvdZtgNnqKfjBxq4Px-tEQYqtNnL3tQSviZK0EKEExE5iqhjUghWKuFg3YJmt92WtNSz1AY2Gco-lfiL68GX2n23CvlayY5CILfD4IxPB7gTTrwScLfW9GCEvSpeRVLh2VZUY_vUI3YYlj_qodJWTJdiGuirM91ZqcgB9dyO_aPBsYvM31cT7bLyTjkiiFdw7ne4fHgkVwT9ETrHddpF91Ufb4-DzpJ_5_z2QA7YFojZl0hHufZpOyIFGVlopi-g8cKtAy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756724460</pqid></control><display><type>article</type><title>Using the software DeepWings© to classify honey bees across europe through wing geometric morphometrics</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Garcia, Carlos A.Y. ; Soares Rodrigues, Pedro João ; Tofilski, Adam ; Elen, Dylan ; McCormack, Grace P. ; Oleksa, Andrzej ; Henriques, Dora ; Ilyasov, Rustem ; Kartashev, Anatoly ; Bargain, Christian ; Fried, Balser ; Pinto, Maria Alice</creator><creatorcontrib>Garcia, Carlos A.Y. ; Soares Rodrigues, Pedro João ; Tofilski, Adam ; Elen, Dylan ; McCormack, Grace P. ; Oleksa, Andrzej ; Henriques, Dora ; Ilyasov, Rustem ; Kartashev, Anatoly ; Bargain, Christian ; Fried, Balser ; Pinto, Maria Alice</creatorcontrib><description>DeepWings© is a software that uses machine learning to automatically classify honey bee subspecies by wing geometric morphometrics. Here, we tested the five subspecies classifier (A. m. carnica, Apis mellifera caucasia, A. m. iberiensis, Apis mellifera ligustica, and A. m. mellifera) of DeepWings© on 14,816 wing images with variable quality and acquired by different beekeepers and researchers. These images represented 2601 colonies from the native ranges of the M-lineage A. m. iberiensis and A. m. mellifera, and the C-lineage A. m. carnica. In the A. m. iberiensis range, 92.6% of the colonies matched this subspecies, with a high median probability (0.919). In the Azores, where the Iberian subspecies was historically introduced, a lower proportion (85.7%) and probability (0.842) were observed. In the A. m mellifera range, only 41.1 % of the colonies matched this subspecies, which is compatible with a history of C-derived introgression. Yet, these colonies were classified with the highest probability (0.994) of the three subspecies. In the A. m. carnica range, 88.3% of the colonies matched this subspecies, with a probability of 0.984. The association between wing and molecular markers, assessed for 1214 colonies from the M-lineage range, was highly significant but not strong (r = 0.31, p < 0.0001). The agreement between the markers was influenced by C-derived introgression, with the best results obtained for colonies with high genetic integrity. This study indicates the good performance of DeepWings© on a realistic wing image dataset.</description><identifier>ISSN: 2075-4450</identifier><identifier>EISSN: 2075-4450</identifier><identifier>DOI: 10.3390/insects13121132</identifier><identifier>PMID: 36555043</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>Apis mellifera ; Apis mellifera subspecies ; Beekeeping ; Bees ; Biological research ; Biology, Experimental ; Breeding ; Classification ; Colonies ; Computer programs ; Discriminant analysis ; Honey ; honey bee classification ; honey bee conservation ; Honeybee ; Identification ; Identification and classification ; Image acquisition ; Image processing ; Image quality ; introgression ; Machine learning ; Morphometrics (Biology) ; Physiological aspects ; Pollution ; Probability ; Software ; Venation ; wing geometric morphometrics</subject><ispartof>Insects (Basel, Switzerland), 2022-12, Vol.13 (12), p.1132</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753</citedby><cites>FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753</cites><orcidid>0000-0001-7530-682X ; 0000-0002-0555-2029 ; 0000-0001-9663-8399 ; 0000-0002-6916-3647 ; 0000-0003-4960-5185 ; 0000-0002-3898-7029 ; 0000-0003-2445-4739 ; 0000-0001-5881-7150 ; 0000-0002-0414-8075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756724460/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756724460?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36555043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Carlos A.Y.</creatorcontrib><creatorcontrib>Soares Rodrigues, Pedro João</creatorcontrib><creatorcontrib>Tofilski, Adam</creatorcontrib><creatorcontrib>Elen, Dylan</creatorcontrib><creatorcontrib>McCormack, Grace P.</creatorcontrib><creatorcontrib>Oleksa, Andrzej</creatorcontrib><creatorcontrib>Henriques, Dora</creatorcontrib><creatorcontrib>Ilyasov, Rustem</creatorcontrib><creatorcontrib>Kartashev, Anatoly</creatorcontrib><creatorcontrib>Bargain, Christian</creatorcontrib><creatorcontrib>Fried, Balser</creatorcontrib><creatorcontrib>Pinto, Maria Alice</creatorcontrib><title>Using the software DeepWings© to classify honey bees across europe through wing geometric morphometrics</title><title>Insects (Basel, Switzerland)</title><addtitle>Insects</addtitle><description>DeepWings© is a software that uses machine learning to automatically classify honey bee subspecies by wing geometric morphometrics. Here, we tested the five subspecies classifier (A. m. carnica, Apis mellifera caucasia, A. m. iberiensis, Apis mellifera ligustica, and A. m. mellifera) of DeepWings© on 14,816 wing images with variable quality and acquired by different beekeepers and researchers. These images represented 2601 colonies from the native ranges of the M-lineage A. m. iberiensis and A. m. mellifera, and the C-lineage A. m. carnica. In the A. m. iberiensis range, 92.6% of the colonies matched this subspecies, with a high median probability (0.919). In the Azores, where the Iberian subspecies was historically introduced, a lower proportion (85.7%) and probability (0.842) were observed. In the A. m mellifera range, only 41.1 % of the colonies matched this subspecies, which is compatible with a history of C-derived introgression. Yet, these colonies were classified with the highest probability (0.994) of the three subspecies. In the A. m. carnica range, 88.3% of the colonies matched this subspecies, with a probability of 0.984. The association between wing and molecular markers, assessed for 1214 colonies from the M-lineage range, was highly significant but not strong (r = 0.31, p < 0.0001). The agreement between the markers was influenced by C-derived introgression, with the best results obtained for colonies with high genetic integrity. This study indicates the good performance of DeepWings© on a realistic wing image dataset.</description><subject>Apis mellifera</subject><subject>Apis mellifera subspecies</subject><subject>Beekeeping</subject><subject>Bees</subject><subject>Biological research</subject><subject>Biology, Experimental</subject><subject>Breeding</subject><subject>Classification</subject><subject>Colonies</subject><subject>Computer programs</subject><subject>Discriminant analysis</subject><subject>Honey</subject><subject>honey bee classification</subject><subject>honey bee conservation</subject><subject>Honeybee</subject><subject>Identification</subject><subject>Identification and classification</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Image quality</subject><subject>introgression</subject><subject>Machine learning</subject><subject>Morphometrics (Biology)</subject><subject>Physiological aspects</subject><subject>Pollution</subject><subject>Probability</subject><subject>Software</subject><subject>Venation</subject><subject>wing geometric morphometrics</subject><issn>2075-4450</issn><issn>2075-4450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1u3CAQx62qVRNtcu6tQuqll03AfJlLpSjpR6RIuTTqEWE82Kxs44KdaB-pr9EnK5vdRkngAAy_-TPDTFF8IPiMUoXP_ZjAzolQUhJCyzfFcYklXzPG8dtn-6PiNKUNzkNkUFTviyMqOOeY0eOiu0t-bNHcAUrBzQ8mAroCmH5la_r7B80B2d6k5N0WdWGELaoBEjI2hpQQLDFMkL1jWNoOPeykWggDzNFbNIQ4dYdDOineOdMnOD2sq-Lu29eflz_WN7ffry8vbtaWczKvjQUCTvCyMUrUlhMBkklbcQwVa6yU2EgqKFTcibJkRrpK1pVgJWWAieR0VVzvdZtgNnqKfjBxq4Px-tEQYqtNnL3tQSviZK0EKEExE5iqhjUghWKuFg3YJmt92WtNSz1AY2Gco-lfiL68GX2n23CvlayY5CILfD4IxPB7gTTrwScLfW9GCEvSpeRVLh2VZUY_vUI3YYlj_qodJWTJdiGuirM91ZqcgB9dyO_aPBsYvM31cT7bLyTjkiiFdw7ne4fHgkVwT9ETrHddpF91Ufb4-DzpJ_5_z2QA7YFojZl0hHufZpOyIFGVlopi-g8cKtAy</recordid><startdate>20221208</startdate><enddate>20221208</enddate><creator>Garcia, Carlos A.Y.</creator><creator>Soares Rodrigues, Pedro João</creator><creator>Tofilski, Adam</creator><creator>Elen, Dylan</creator><creator>McCormack, Grace P.</creator><creator>Oleksa, Andrzej</creator><creator>Henriques, Dora</creator><creator>Ilyasov, Rustem</creator><creator>Kartashev, Anatoly</creator><creator>Bargain, Christian</creator><creator>Fried, Balser</creator><creator>Pinto, Maria Alice</creator><general>MDPI</general><general>MDPI AG</general><scope>RCLKO</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7530-682X</orcidid><orcidid>https://orcid.org/0000-0002-0555-2029</orcidid><orcidid>https://orcid.org/0000-0001-9663-8399</orcidid><orcidid>https://orcid.org/0000-0002-6916-3647</orcidid><orcidid>https://orcid.org/0000-0003-4960-5185</orcidid><orcidid>https://orcid.org/0000-0002-3898-7029</orcidid><orcidid>https://orcid.org/0000-0003-2445-4739</orcidid><orcidid>https://orcid.org/0000-0001-5881-7150</orcidid><orcidid>https://orcid.org/0000-0002-0414-8075</orcidid></search><sort><creationdate>20221208</creationdate><title>Using the software DeepWings© to classify honey bees across europe through wing geometric morphometrics</title><author>Garcia, Carlos A.Y. ; Soares Rodrigues, Pedro João ; Tofilski, Adam ; Elen, Dylan ; McCormack, Grace P. ; Oleksa, Andrzej ; Henriques, Dora ; Ilyasov, Rustem ; Kartashev, Anatoly ; Bargain, Christian ; Fried, Balser ; Pinto, Maria Alice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apis mellifera</topic><topic>Apis mellifera subspecies</topic><topic>Beekeeping</topic><topic>Bees</topic><topic>Biological research</topic><topic>Biology, Experimental</topic><topic>Breeding</topic><topic>Classification</topic><topic>Colonies</topic><topic>Computer programs</topic><topic>Discriminant analysis</topic><topic>Honey</topic><topic>honey bee classification</topic><topic>honey bee conservation</topic><topic>Honeybee</topic><topic>Identification</topic><topic>Identification and classification</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Image quality</topic><topic>introgression</topic><topic>Machine learning</topic><topic>Morphometrics (Biology)</topic><topic>Physiological aspects</topic><topic>Pollution</topic><topic>Probability</topic><topic>Software</topic><topic>Venation</topic><topic>wing geometric morphometrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Carlos A.Y.</creatorcontrib><creatorcontrib>Soares Rodrigues, Pedro João</creatorcontrib><creatorcontrib>Tofilski, Adam</creatorcontrib><creatorcontrib>Elen, Dylan</creatorcontrib><creatorcontrib>McCormack, Grace P.</creatorcontrib><creatorcontrib>Oleksa, Andrzej</creatorcontrib><creatorcontrib>Henriques, Dora</creatorcontrib><creatorcontrib>Ilyasov, Rustem</creatorcontrib><creatorcontrib>Kartashev, Anatoly</creatorcontrib><creatorcontrib>Bargain, Christian</creatorcontrib><creatorcontrib>Fried, Balser</creatorcontrib><creatorcontrib>Pinto, Maria Alice</creatorcontrib><collection>RCAAP open access repository</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Insects (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Carlos A.Y.</au><au>Soares Rodrigues, Pedro João</au><au>Tofilski, Adam</au><au>Elen, Dylan</au><au>McCormack, Grace P.</au><au>Oleksa, Andrzej</au><au>Henriques, Dora</au><au>Ilyasov, Rustem</au><au>Kartashev, Anatoly</au><au>Bargain, Christian</au><au>Fried, Balser</au><au>Pinto, Maria Alice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the software DeepWings© to classify honey bees across europe through wing geometric morphometrics</atitle><jtitle>Insects (Basel, Switzerland)</jtitle><addtitle>Insects</addtitle><date>2022-12-08</date><risdate>2022</risdate><volume>13</volume><issue>12</issue><spage>1132</spage><pages>1132-</pages><issn>2075-4450</issn><eissn>2075-4450</eissn><abstract>DeepWings© is a software that uses machine learning to automatically classify honey bee subspecies by wing geometric morphometrics. Here, we tested the five subspecies classifier (A. m. carnica, Apis mellifera caucasia, A. m. iberiensis, Apis mellifera ligustica, and A. m. mellifera) of DeepWings© on 14,816 wing images with variable quality and acquired by different beekeepers and researchers. These images represented 2601 colonies from the native ranges of the M-lineage A. m. iberiensis and A. m. mellifera, and the C-lineage A. m. carnica. In the A. m. iberiensis range, 92.6% of the colonies matched this subspecies, with a high median probability (0.919). In the Azores, where the Iberian subspecies was historically introduced, a lower proportion (85.7%) and probability (0.842) were observed. In the A. m mellifera range, only 41.1 % of the colonies matched this subspecies, which is compatible with a history of C-derived introgression. Yet, these colonies were classified with the highest probability (0.994) of the three subspecies. In the A. m. carnica range, 88.3% of the colonies matched this subspecies, with a probability of 0.984. The association between wing and molecular markers, assessed for 1214 colonies from the M-lineage range, was highly significant but not strong (r = 0.31, p < 0.0001). The agreement between the markers was influenced by C-derived introgression, with the best results obtained for colonies with high genetic integrity. This study indicates the good performance of DeepWings© on a realistic wing image dataset.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>36555043</pmid><doi>10.3390/insects13121132</doi><orcidid>https://orcid.org/0000-0001-7530-682X</orcidid><orcidid>https://orcid.org/0000-0002-0555-2029</orcidid><orcidid>https://orcid.org/0000-0001-9663-8399</orcidid><orcidid>https://orcid.org/0000-0002-6916-3647</orcidid><orcidid>https://orcid.org/0000-0003-4960-5185</orcidid><orcidid>https://orcid.org/0000-0002-3898-7029</orcidid><orcidid>https://orcid.org/0000-0003-2445-4739</orcidid><orcidid>https://orcid.org/0000-0001-5881-7150</orcidid><orcidid>https://orcid.org/0000-0002-0414-8075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4450 |
ispartof | Insects (Basel, Switzerland), 2022-12, Vol.13 (12), p.1132 |
issn | 2075-4450 2075-4450 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_91f7b96e963046039d4de7694fb6decd |
source | NCBI_PubMed Central(免费); Publicly Available Content Database |
subjects | Apis mellifera Apis mellifera subspecies Beekeeping Bees Biological research Biology, Experimental Breeding Classification Colonies Computer programs Discriminant analysis Honey honey bee classification honey bee conservation Honeybee Identification Identification and classification Image acquisition Image processing Image quality introgression Machine learning Morphometrics (Biology) Physiological aspects Pollution Probability Software Venation wing geometric morphometrics |
title | Using the software DeepWings© to classify honey bees across europe through wing geometric morphometrics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20software%20DeepWings%C2%A9%20to%20classify%20honey%20bees%20across%20europe%20through%20wing%20geometric%20morphometrics&rft.jtitle=Insects%20(Basel,%20Switzerland)&rft.au=Garcia,%20Carlos%20A.Y.&rft.date=2022-12-08&rft.volume=13&rft.issue=12&rft.spage=1132&rft.pages=1132-&rft.issn=2075-4450&rft.eissn=2075-4450&rft_id=info:doi/10.3390/insects13121132&rft_dat=%3Cgale_doaj_%3EA745719900%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-ace1ef652da96bc516e747c850e84dc770a7363e85f6224a7f87b864234e01753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756724460&rft_id=info:pmid/36555043&rft_galeid=A745719900&rfr_iscdi=true |