Loading…

Quantum Reinforcement Learning with Quantum Photonics

Quantum machine learning has emerged as a promising paradigm that could accelerate machine learning calculations. Inside this field, quantum reinforcement learning aims at designing and building quantum agents that may exchange information with their environment and adapt to it, with the aim of achi...

Full description

Saved in:
Bibliographic Details
Published in:Photonics 2021-02, Vol.8 (2), p.33
Main Author: Lamata, Lucas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-901a922dd0150df4c10ec1c0a71a6dde92bae567962481a555b8577d73f8f7633
cites cdi_FETCH-LOGICAL-c379t-901a922dd0150df4c10ec1c0a71a6dde92bae567962481a555b8577d73f8f7633
container_end_page
container_issue 2
container_start_page 33
container_title Photonics
container_volume 8
creator Lamata, Lucas
description Quantum machine learning has emerged as a promising paradigm that could accelerate machine learning calculations. Inside this field, quantum reinforcement learning aims at designing and building quantum agents that may exchange information with their environment and adapt to it, with the aim of achieving some goal. Different quantum platforms have been considered for quantum machine learning and specifically for quantum reinforcement learning. Here, we review the field of quantum reinforcement learning and its implementation with quantum photonics. This quantum technology may enhance quantum computation and communication, as well as machine learning, via the fruitful marriage between these previously unrelated fields.
doi_str_mv 10.3390/photonics8020033
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_920d3ff0e54f410bbd1dca9ad27815a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_920d3ff0e54f410bbd1dca9ad27815a1</doaj_id><sourcerecordid>2484598674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-901a922dd0150df4c10ec1c0a71a6dde92bae567962481a555b8577d73f8f7633</originalsourceid><addsrcrecordid>eNpdkFtLw0AQhRdRsNS--xjwOTp7y2YfpXgpFLygz8tkL21Km62bBPHfG40VcV5mGA7fORxCzilccq7har-OXWxq25bAADg_IhPGQeSF4uz4z31KZm27gWE05aUUEyKfemy6fpc9-7oJMVm_802XLT2mpm5W2XvdrbOD5vFgc0ZOAm5bP_vZU_J6e_Myv8-XD3eL-fUyt1zpLtdAUTPmHFAJLghLwVtqARXFwjmvWYVeFkoXTJQUpZRVKZVyiocyqILzKVmMXBdxY_ap3mH6MBFr8_2IaWUwdbXdeqMZOB4CeCmCoFBVjjqLGh1TJZVIB9bFyNqn-Nb7tjOb2KdmiG8GdyF1WSgxqGBU2RTbNvnw60rBfHVt_nfNPwEotXME</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484598674</pqid></control><display><type>article</type><title>Quantum Reinforcement Learning with Quantum Photonics</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Lamata, Lucas</creator><creatorcontrib>Lamata, Lucas</creatorcontrib><description>Quantum machine learning has emerged as a promising paradigm that could accelerate machine learning calculations. Inside this field, quantum reinforcement learning aims at designing and building quantum agents that may exchange information with their environment and adapt to it, with the aim of achieving some goal. Different quantum platforms have been considered for quantum machine learning and specifically for quantum reinforcement learning. Here, we review the field of quantum reinforcement learning and its implementation with quantum photonics. This quantum technology may enhance quantum computation and communication, as well as machine learning, via the fruitful marriage between these previously unrelated fields.</description><identifier>ISSN: 2304-6732</identifier><identifier>EISSN: 2304-6732</identifier><identifier>DOI: 10.3390/photonics8020033</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptation ; Algorithms ; Artificial intelligence ; Learning algorithms ; Machine learning ; Photonics ; Protocol ; quantum communication ; Quantum computing ; quantum machine learning ; quantum photonics ; quantum reinforcement learning ; quantum technologies ; Reinforcement ; Tomography</subject><ispartof>Photonics, 2021-02, Vol.8 (2), p.33</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-901a922dd0150df4c10ec1c0a71a6dde92bae567962481a555b8577d73f8f7633</citedby><cites>FETCH-LOGICAL-c379t-901a922dd0150df4c10ec1c0a71a6dde92bae567962481a555b8577d73f8f7633</cites><orcidid>0000-0002-9504-8685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2484598674/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2484598674?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Lamata, Lucas</creatorcontrib><title>Quantum Reinforcement Learning with Quantum Photonics</title><title>Photonics</title><description>Quantum machine learning has emerged as a promising paradigm that could accelerate machine learning calculations. Inside this field, quantum reinforcement learning aims at designing and building quantum agents that may exchange information with their environment and adapt to it, with the aim of achieving some goal. Different quantum platforms have been considered for quantum machine learning and specifically for quantum reinforcement learning. Here, we review the field of quantum reinforcement learning and its implementation with quantum photonics. This quantum technology may enhance quantum computation and communication, as well as machine learning, via the fruitful marriage between these previously unrelated fields.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Photonics</subject><subject>Protocol</subject><subject>quantum communication</subject><subject>Quantum computing</subject><subject>quantum machine learning</subject><subject>quantum photonics</subject><subject>quantum reinforcement learning</subject><subject>quantum technologies</subject><subject>Reinforcement</subject><subject>Tomography</subject><issn>2304-6732</issn><issn>2304-6732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkFtLw0AQhRdRsNS--xjwOTp7y2YfpXgpFLygz8tkL21Km62bBPHfG40VcV5mGA7fORxCzilccq7har-OXWxq25bAADg_IhPGQeSF4uz4z31KZm27gWE05aUUEyKfemy6fpc9-7oJMVm_802XLT2mpm5W2XvdrbOD5vFgc0ZOAm5bP_vZU_J6e_Myv8-XD3eL-fUyt1zpLtdAUTPmHFAJLghLwVtqARXFwjmvWYVeFkoXTJQUpZRVKZVyiocyqILzKVmMXBdxY_ap3mH6MBFr8_2IaWUwdbXdeqMZOB4CeCmCoFBVjjqLGh1TJZVIB9bFyNqn-Nb7tjOb2KdmiG8GdyF1WSgxqGBU2RTbNvnw60rBfHVt_nfNPwEotXME</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Lamata, Lucas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9504-8685</orcidid></search><sort><creationdate>20210201</creationdate><title>Quantum Reinforcement Learning with Quantum Photonics</title><author>Lamata, Lucas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-901a922dd0150df4c10ec1c0a71a6dde92bae567962481a555b8577d73f8f7633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Photonics</topic><topic>Protocol</topic><topic>quantum communication</topic><topic>Quantum computing</topic><topic>quantum machine learning</topic><topic>quantum photonics</topic><topic>quantum reinforcement learning</topic><topic>quantum technologies</topic><topic>Reinforcement</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamata, Lucas</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamata, Lucas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Reinforcement Learning with Quantum Photonics</atitle><jtitle>Photonics</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>8</volume><issue>2</issue><spage>33</spage><pages>33-</pages><issn>2304-6732</issn><eissn>2304-6732</eissn><abstract>Quantum machine learning has emerged as a promising paradigm that could accelerate machine learning calculations. Inside this field, quantum reinforcement learning aims at designing and building quantum agents that may exchange information with their environment and adapt to it, with the aim of achieving some goal. Different quantum platforms have been considered for quantum machine learning and specifically for quantum reinforcement learning. Here, we review the field of quantum reinforcement learning and its implementation with quantum photonics. This quantum technology may enhance quantum computation and communication, as well as machine learning, via the fruitful marriage between these previously unrelated fields.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/photonics8020033</doi><orcidid>https://orcid.org/0000-0002-9504-8685</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2304-6732
ispartof Photonics, 2021-02, Vol.8 (2), p.33
issn 2304-6732
2304-6732
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_920d3ff0e54f410bbd1dca9ad27815a1
source Publicly Available Content Database; EZB Electronic Journals Library
subjects Adaptation
Algorithms
Artificial intelligence
Learning algorithms
Machine learning
Photonics
Protocol
quantum communication
Quantum computing
quantum machine learning
quantum photonics
quantum reinforcement learning
quantum technologies
Reinforcement
Tomography
title Quantum Reinforcement Learning with Quantum Photonics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Reinforcement%20Learning%20with%20Quantum%20Photonics&rft.jtitle=Photonics&rft.au=Lamata,%20Lucas&rft.date=2021-02-01&rft.volume=8&rft.issue=2&rft.spage=33&rft.pages=33-&rft.issn=2304-6732&rft.eissn=2304-6732&rft_id=info:doi/10.3390/photonics8020033&rft_dat=%3Cproquest_doaj_%3E2484598674%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-901a922dd0150df4c10ec1c0a71a6dde92bae567962481a555b8577d73f8f7633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2484598674&rft_id=info:pmid/&rfr_iscdi=true