Loading…
A Silicon Optical Bench-Based Forward-View Two-Axis Scanner for Microendoscopy Applications
Optical microendoscopy enabled by a microelectromechanical system (MEMS) scanning mirror offers great potential for in vivo diagnosis of early cancer inside the human body. However, an additional beam folding mirror is needed for a MEMS mirror to perform forward-view scanning, which drastically incr...
Saved in:
Published in: | Micromachines (Basel) 2020-11, Vol.11 (12), p.1051 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optical microendoscopy enabled by a microelectromechanical system (MEMS) scanning mirror offers great potential for in vivo diagnosis of early cancer inside the human body. However, an additional beam folding mirror is needed for a MEMS mirror to perform forward-view scanning, which drastically increases the diameter of the resultant MEMS endoscopic probe. This paper presents a new monolithic two-axis forward-view optical scanner that is composed of an electrothermally driven MEMS mirror and a beam folding mirror both vertically standing and integrated on a silicon substrate. The mirror plates of the two mirrors are parallel to each other with a small distance of 0.6 mm. The laser beam can be incident first on the MEMS mirror and then on the beam folding mirror, both at 45°. The MEMS scanner has been successfully fabricated. The measured optical scan angles of the MEMS mirror were 10.3° for the x axis and 10.2° for the y axis operated under only 3 V. The measured tip-tilt resonant frequencies of the MEMS mirror were 1590 Hz and 1850 Hz, respectively. With this compact MEMS design, a forward-view scanning endoscopic probe with an outer diameter as small as 2.5 mm can be made, which will enable such imaging probes to enter the subsegmental bronchi of an adult patient. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi11121051 |