Loading…

mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline

Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a L...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-11, Vol.11 (1), p.5640-5640, Article 5640
Main Authors: Obraztsova, Kseniya, Basil, Maria C., Rue, Ryan, Sivakumar, Aravind, Lin, Susan M., Mukhitov, Alexander R., Gritsiuta, Andrei I., Evans, Jilly F., Kopp, Meghan, Katzen, Jeremy, Robichaud, Annette, Atochina-Vasserman, Elena N., Li, Shanru, Carl, Justine, Babu, Apoorva, Morley, Michael P., Cantu, Edward, Beers, Michael F., Frank, David B., Morrisey, Edward E., Krymskaya, Vera P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093
cites cdi_FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093
container_end_page 5640
container_issue 1
container_start_page 5640
container_title Nature communications
container_volume 11
creator Obraztsova, Kseniya
Basil, Maria C.
Rue, Ryan
Sivakumar, Aravind
Lin, Susan M.
Mukhitov, Alexander R.
Gritsiuta, Andrei I.
Evans, Jilly F.
Kopp, Meghan
Katzen, Jeremy
Robichaud, Annette
Atochina-Vasserman, Elena N.
Li, Shanru
Carl, Justine
Babu, Apoorva
Morley, Michael P.
Cantu, Edward
Beers, Michael F.
Frank, David B.
Morrisey, Edward E.
Krymskaya, Vera P.
description Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of Tsc2 in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal Tsc2 -deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype. The cellular origins of lymphangioleiomyomatosis (LAM), a rare fatal lung disease, are poorly understood. Here the authors identify a mesenchymal cell hub coordinating the LAM phenotype and develop a LAM mouse model where they investigate the co-operative dysregulation of mTORC1 and WNT growth pathways in the sex- and age-specific changes leading to structural and functional decline.
doi_str_mv 10.1038/s41467-020-18979-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_920f2bde4ce048d5a6bf73943fc2fe6e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_920f2bde4ce048d5a6bf73943fc2fe6e</doaj_id><sourcerecordid>2458735109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhEvBXYvuChFZ8VKpUCZWz5djjrZfEXuxkRf89ZlNKywFfbM2888yM9TbNS4LfEszku8IJ70WLKW6JVEK1_ElzSjEnLRGUPX3wPmnOS9nhepgikvPnzQljpFNYyNPm-3R99XVDkLFzOJg5pIhCROMSt2iCAtHe3E6AXA4HKKjAzxaZ6JDZQutgD9FBnNF-GacUTb5FZc6LnZcMR5Vfoj0SHdgxRHjRPPNmLHB-d5813z59vN58aS-vPl9sPly2tuN4bjljopOW9ooKrpwcBiwVSNdRPwjcg6BC9Z4oY5gYKGG97bxiQ0eVY4Zgxc6ai5XrktnpfQ5TnU0nE_QxkPJWmzwHO4JWFHs6OOAWMK8tTD94wRRn3lIPPVTW-5W1X4YJnK37ZjM-gj7OxHCjt-mgRc9lz3AFvLkD5PRjgTLrKRQL42gipKVoyjspWLfO_fof6S4tOdavqipBOk6oEFVFV5XNqZQM_n4YgvVva-jVGrpaQx-toXktevVwjfuSP0aoArYKSk3FLeS_vf-D_QUrMMSs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471541277</pqid></control><display><type>article</type><title>mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Obraztsova, Kseniya ; Basil, Maria C. ; Rue, Ryan ; Sivakumar, Aravind ; Lin, Susan M. ; Mukhitov, Alexander R. ; Gritsiuta, Andrei I. ; Evans, Jilly F. ; Kopp, Meghan ; Katzen, Jeremy ; Robichaud, Annette ; Atochina-Vasserman, Elena N. ; Li, Shanru ; Carl, Justine ; Babu, Apoorva ; Morley, Michael P. ; Cantu, Edward ; Beers, Michael F. ; Frank, David B. ; Morrisey, Edward E. ; Krymskaya, Vera P.</creator><creatorcontrib>Obraztsova, Kseniya ; Basil, Maria C. ; Rue, Ryan ; Sivakumar, Aravind ; Lin, Susan M. ; Mukhitov, Alexander R. ; Gritsiuta, Andrei I. ; Evans, Jilly F. ; Kopp, Meghan ; Katzen, Jeremy ; Robichaud, Annette ; Atochina-Vasserman, Elena N. ; Li, Shanru ; Carl, Justine ; Babu, Apoorva ; Morley, Michael P. ; Cantu, Edward ; Beers, Michael F. ; Frank, David B. ; Morrisey, Edward E. ; Krymskaya, Vera P.</creatorcontrib><description>Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of Tsc2 in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal Tsc2 -deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype. The cellular origins of lymphangioleiomyomatosis (LAM), a rare fatal lung disease, are poorly understood. Here the authors identify a mesenchymal cell hub coordinating the LAM phenotype and develop a LAM mouse model where they investigate the co-operative dysregulation of mTORC1 and WNT growth pathways in the sex- and age-specific changes leading to structural and functional decline.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-18979-4</identifier><identifier>PMID: 33159078</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/1 ; 14/19 ; 14/35 ; 14/63 ; 38/22 ; 38/39 ; 38/47 ; 38/77 ; 38/90 ; 38/91 ; 631/136/1425 ; 631/80/304 ; 64/110 ; 64/60 ; 82/29 ; 82/51 ; Age ; Age composition ; Age Factors ; Aged ; Alveoli ; Animals ; Crosstalk ; Deactivation ; Female ; Gene expression ; Gene sequencing ; Genotype &amp; phenotype ; Humanities and Social Sciences ; Humans ; Inactivation ; Lung - drug effects ; Lung - metabolism ; Lung - physiopathology ; Lung diseases ; Lymphangioleiomyomatosis - drug therapy ; Lymphangioleiomyomatosis - genetics ; Lymphangioleiomyomatosis - metabolism ; Lymphangioleiomyomatosis - physiopathology ; Male ; Mechanistic Target of Rapamycin Complex 1 - genetics ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mesenchyme ; Mesoderm - drug effects ; Mesoderm - metabolism ; Mice ; multidisciplinary ; Mutation ; Phenotypes ; Pulmonary functions ; Rapamycin ; Respiratory function ; Ribonucleic acid ; RNA ; Science ; Science (multidisciplinary) ; Sex ; Sex Factors ; Signal transduction ; Signaling ; Sirolimus - administration &amp; dosage ; Structure-function relationships ; Suppressors ; TOR protein ; Tuberous sclerosis ; Tuberous Sclerosis Complex 2 Protein - genetics ; Tuberous Sclerosis Complex 2 Protein - metabolism ; Wnt protein ; Wnt Signaling Pathway</subject><ispartof>Nature communications, 2020-11, Vol.11 (1), p.5640-5640, Article 5640</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093</citedby><cites>FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093</cites><orcidid>0000-0002-3064-2069 ; 0000-0001-6443-0788 ; 0000-0003-2265-9992 ; 0000-0001-7950-7004 ; 0000-0002-0584-4486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471541277/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471541277?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33159078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Obraztsova, Kseniya</creatorcontrib><creatorcontrib>Basil, Maria C.</creatorcontrib><creatorcontrib>Rue, Ryan</creatorcontrib><creatorcontrib>Sivakumar, Aravind</creatorcontrib><creatorcontrib>Lin, Susan M.</creatorcontrib><creatorcontrib>Mukhitov, Alexander R.</creatorcontrib><creatorcontrib>Gritsiuta, Andrei I.</creatorcontrib><creatorcontrib>Evans, Jilly F.</creatorcontrib><creatorcontrib>Kopp, Meghan</creatorcontrib><creatorcontrib>Katzen, Jeremy</creatorcontrib><creatorcontrib>Robichaud, Annette</creatorcontrib><creatorcontrib>Atochina-Vasserman, Elena N.</creatorcontrib><creatorcontrib>Li, Shanru</creatorcontrib><creatorcontrib>Carl, Justine</creatorcontrib><creatorcontrib>Babu, Apoorva</creatorcontrib><creatorcontrib>Morley, Michael P.</creatorcontrib><creatorcontrib>Cantu, Edward</creatorcontrib><creatorcontrib>Beers, Michael F.</creatorcontrib><creatorcontrib>Frank, David B.</creatorcontrib><creatorcontrib>Morrisey, Edward E.</creatorcontrib><creatorcontrib>Krymskaya, Vera P.</creatorcontrib><title>mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of Tsc2 in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal Tsc2 -deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype. The cellular origins of lymphangioleiomyomatosis (LAM), a rare fatal lung disease, are poorly understood. Here the authors identify a mesenchymal cell hub coordinating the LAM phenotype and develop a LAM mouse model where they investigate the co-operative dysregulation of mTORC1 and WNT growth pathways in the sex- and age-specific changes leading to structural and functional decline.</description><subject>14/1</subject><subject>14/19</subject><subject>14/35</subject><subject>14/63</subject><subject>38/22</subject><subject>38/39</subject><subject>38/47</subject><subject>38/77</subject><subject>38/90</subject><subject>38/91</subject><subject>631/136/1425</subject><subject>631/80/304</subject><subject>64/110</subject><subject>64/60</subject><subject>82/29</subject><subject>82/51</subject><subject>Age</subject><subject>Age composition</subject><subject>Age Factors</subject><subject>Aged</subject><subject>Alveoli</subject><subject>Animals</subject><subject>Crosstalk</subject><subject>Deactivation</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genotype &amp; phenotype</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inactivation</subject><subject>Lung - drug effects</subject><subject>Lung - metabolism</subject><subject>Lung - physiopathology</subject><subject>Lung diseases</subject><subject>Lymphangioleiomyomatosis - drug therapy</subject><subject>Lymphangioleiomyomatosis - genetics</subject><subject>Lymphangioleiomyomatosis - metabolism</subject><subject>Lymphangioleiomyomatosis - physiopathology</subject><subject>Male</subject><subject>Mechanistic Target of Rapamycin Complex 1 - genetics</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mesenchyme</subject><subject>Mesoderm - drug effects</subject><subject>Mesoderm - metabolism</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Phenotypes</subject><subject>Pulmonary functions</subject><subject>Rapamycin</subject><subject>Respiratory function</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sex</subject><subject>Sex Factors</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Sirolimus - administration &amp; dosage</subject><subject>Structure-function relationships</subject><subject>Suppressors</subject><subject>TOR protein</subject><subject>Tuberous sclerosis</subject><subject>Tuberous Sclerosis Complex 2 Protein - genetics</subject><subject>Tuberous Sclerosis Complex 2 Protein - metabolism</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhEvBXYvuChFZ8VKpUCZWz5djjrZfEXuxkRf89ZlNKywFfbM2888yM9TbNS4LfEszku8IJ70WLKW6JVEK1_ElzSjEnLRGUPX3wPmnOS9nhepgikvPnzQljpFNYyNPm-3R99XVDkLFzOJg5pIhCROMSt2iCAtHe3E6AXA4HKKjAzxaZ6JDZQutgD9FBnNF-GacUTb5FZc6LnZcMR5Vfoj0SHdgxRHjRPPNmLHB-d5813z59vN58aS-vPl9sPly2tuN4bjljopOW9ooKrpwcBiwVSNdRPwjcg6BC9Z4oY5gYKGG97bxiQ0eVY4Zgxc6ai5XrktnpfQ5TnU0nE_QxkPJWmzwHO4JWFHs6OOAWMK8tTD94wRRn3lIPPVTW-5W1X4YJnK37ZjM-gj7OxHCjt-mgRc9lz3AFvLkD5PRjgTLrKRQL42gipKVoyjspWLfO_fof6S4tOdavqipBOk6oEFVFV5XNqZQM_n4YgvVva-jVGrpaQx-toXktevVwjfuSP0aoArYKSk3FLeS_vf-D_QUrMMSs</recordid><startdate>20201106</startdate><enddate>20201106</enddate><creator>Obraztsova, Kseniya</creator><creator>Basil, Maria C.</creator><creator>Rue, Ryan</creator><creator>Sivakumar, Aravind</creator><creator>Lin, Susan M.</creator><creator>Mukhitov, Alexander R.</creator><creator>Gritsiuta, Andrei I.</creator><creator>Evans, Jilly F.</creator><creator>Kopp, Meghan</creator><creator>Katzen, Jeremy</creator><creator>Robichaud, Annette</creator><creator>Atochina-Vasserman, Elena N.</creator><creator>Li, Shanru</creator><creator>Carl, Justine</creator><creator>Babu, Apoorva</creator><creator>Morley, Michael P.</creator><creator>Cantu, Edward</creator><creator>Beers, Michael F.</creator><creator>Frank, David B.</creator><creator>Morrisey, Edward E.</creator><creator>Krymskaya, Vera P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3064-2069</orcidid><orcidid>https://orcid.org/0000-0001-6443-0788</orcidid><orcidid>https://orcid.org/0000-0003-2265-9992</orcidid><orcidid>https://orcid.org/0000-0001-7950-7004</orcidid><orcidid>https://orcid.org/0000-0002-0584-4486</orcidid></search><sort><creationdate>20201106</creationdate><title>mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline</title><author>Obraztsova, Kseniya ; Basil, Maria C. ; Rue, Ryan ; Sivakumar, Aravind ; Lin, Susan M. ; Mukhitov, Alexander R. ; Gritsiuta, Andrei I. ; Evans, Jilly F. ; Kopp, Meghan ; Katzen, Jeremy ; Robichaud, Annette ; Atochina-Vasserman, Elena N. ; Li, Shanru ; Carl, Justine ; Babu, Apoorva ; Morley, Michael P. ; Cantu, Edward ; Beers, Michael F. ; Frank, David B. ; Morrisey, Edward E. ; Krymskaya, Vera P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14/1</topic><topic>14/19</topic><topic>14/35</topic><topic>14/63</topic><topic>38/22</topic><topic>38/39</topic><topic>38/47</topic><topic>38/77</topic><topic>38/90</topic><topic>38/91</topic><topic>631/136/1425</topic><topic>631/80/304</topic><topic>64/110</topic><topic>64/60</topic><topic>82/29</topic><topic>82/51</topic><topic>Age</topic><topic>Age composition</topic><topic>Age Factors</topic><topic>Aged</topic><topic>Alveoli</topic><topic>Animals</topic><topic>Crosstalk</topic><topic>Deactivation</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genotype &amp; phenotype</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inactivation</topic><topic>Lung - drug effects</topic><topic>Lung - metabolism</topic><topic>Lung - physiopathology</topic><topic>Lung diseases</topic><topic>Lymphangioleiomyomatosis - drug therapy</topic><topic>Lymphangioleiomyomatosis - genetics</topic><topic>Lymphangioleiomyomatosis - metabolism</topic><topic>Lymphangioleiomyomatosis - physiopathology</topic><topic>Male</topic><topic>Mechanistic Target of Rapamycin Complex 1 - genetics</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mesenchyme</topic><topic>Mesoderm - drug effects</topic><topic>Mesoderm - metabolism</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Phenotypes</topic><topic>Pulmonary functions</topic><topic>Rapamycin</topic><topic>Respiratory function</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sex</topic><topic>Sex Factors</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Sirolimus - administration &amp; dosage</topic><topic>Structure-function relationships</topic><topic>Suppressors</topic><topic>TOR protein</topic><topic>Tuberous sclerosis</topic><topic>Tuberous Sclerosis Complex 2 Protein - genetics</topic><topic>Tuberous Sclerosis Complex 2 Protein - metabolism</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obraztsova, Kseniya</creatorcontrib><creatorcontrib>Basil, Maria C.</creatorcontrib><creatorcontrib>Rue, Ryan</creatorcontrib><creatorcontrib>Sivakumar, Aravind</creatorcontrib><creatorcontrib>Lin, Susan M.</creatorcontrib><creatorcontrib>Mukhitov, Alexander R.</creatorcontrib><creatorcontrib>Gritsiuta, Andrei I.</creatorcontrib><creatorcontrib>Evans, Jilly F.</creatorcontrib><creatorcontrib>Kopp, Meghan</creatorcontrib><creatorcontrib>Katzen, Jeremy</creatorcontrib><creatorcontrib>Robichaud, Annette</creatorcontrib><creatorcontrib>Atochina-Vasserman, Elena N.</creatorcontrib><creatorcontrib>Li, Shanru</creatorcontrib><creatorcontrib>Carl, Justine</creatorcontrib><creatorcontrib>Babu, Apoorva</creatorcontrib><creatorcontrib>Morley, Michael P.</creatorcontrib><creatorcontrib>Cantu, Edward</creatorcontrib><creatorcontrib>Beers, Michael F.</creatorcontrib><creatorcontrib>Frank, David B.</creatorcontrib><creatorcontrib>Morrisey, Edward E.</creatorcontrib><creatorcontrib>Krymskaya, Vera P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obraztsova, Kseniya</au><au>Basil, Maria C.</au><au>Rue, Ryan</au><au>Sivakumar, Aravind</au><au>Lin, Susan M.</au><au>Mukhitov, Alexander R.</au><au>Gritsiuta, Andrei I.</au><au>Evans, Jilly F.</au><au>Kopp, Meghan</au><au>Katzen, Jeremy</au><au>Robichaud, Annette</au><au>Atochina-Vasserman, Elena N.</au><au>Li, Shanru</au><au>Carl, Justine</au><au>Babu, Apoorva</au><au>Morley, Michael P.</au><au>Cantu, Edward</au><au>Beers, Michael F.</au><au>Frank, David B.</au><au>Morrisey, Edward E.</au><au>Krymskaya, Vera P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-11-06</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>5640</spage><epage>5640</epage><pages>5640-5640</pages><artnum>5640</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of Tsc2 in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal Tsc2 -deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype. The cellular origins of lymphangioleiomyomatosis (LAM), a rare fatal lung disease, are poorly understood. Here the authors identify a mesenchymal cell hub coordinating the LAM phenotype and develop a LAM mouse model where they investigate the co-operative dysregulation of mTORC1 and WNT growth pathways in the sex- and age-specific changes leading to structural and functional decline.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33159078</pmid><doi>10.1038/s41467-020-18979-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3064-2069</orcidid><orcidid>https://orcid.org/0000-0001-6443-0788</orcidid><orcidid>https://orcid.org/0000-0003-2265-9992</orcidid><orcidid>https://orcid.org/0000-0001-7950-7004</orcidid><orcidid>https://orcid.org/0000-0002-0584-4486</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-11, Vol.11 (1), p.5640-5640, Article 5640
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_920f2bde4ce048d5a6bf73943fc2fe6e
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 14/1
14/19
14/35
14/63
38/22
38/39
38/47
38/77
38/90
38/91
631/136/1425
631/80/304
64/110
64/60
82/29
82/51
Age
Age composition
Age Factors
Aged
Alveoli
Animals
Crosstalk
Deactivation
Female
Gene expression
Gene sequencing
Genotype & phenotype
Humanities and Social Sciences
Humans
Inactivation
Lung - drug effects
Lung - metabolism
Lung - physiopathology
Lung diseases
Lymphangioleiomyomatosis - drug therapy
Lymphangioleiomyomatosis - genetics
Lymphangioleiomyomatosis - metabolism
Lymphangioleiomyomatosis - physiopathology
Male
Mechanistic Target of Rapamycin Complex 1 - genetics
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mesenchyme
Mesoderm - drug effects
Mesoderm - metabolism
Mice
multidisciplinary
Mutation
Phenotypes
Pulmonary functions
Rapamycin
Respiratory function
Ribonucleic acid
RNA
Science
Science (multidisciplinary)
Sex
Sex Factors
Signal transduction
Signaling
Sirolimus - administration & dosage
Structure-function relationships
Suppressors
TOR protein
Tuberous sclerosis
Tuberous Sclerosis Complex 2 Protein - genetics
Tuberous Sclerosis Complex 2 Protein - metabolism
Wnt protein
Wnt Signaling Pathway
title mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC1%20activation%20in%20lung%20mesenchyme%20drives%20sex-%20and%20age-dependent%20pulmonary%20structure%20and%20function%20decline&rft.jtitle=Nature%20communications&rft.au=Obraztsova,%20Kseniya&rft.date=2020-11-06&rft.volume=11&rft.issue=1&rft.spage=5640&rft.epage=5640&rft.pages=5640-5640&rft.artnum=5640&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-18979-4&rft_dat=%3Cproquest_doaj_%3E2458735109%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471541277&rft_id=info:pmid/33159078&rfr_iscdi=true