Loading…
mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline
Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a L...
Saved in:
Published in: | Nature communications 2020-11, Vol.11 (1), p.5640-5640, Article 5640 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093 |
container_end_page | 5640 |
container_issue | 1 |
container_start_page | 5640 |
container_title | Nature communications |
container_volume | 11 |
creator | Obraztsova, Kseniya Basil, Maria C. Rue, Ryan Sivakumar, Aravind Lin, Susan M. Mukhitov, Alexander R. Gritsiuta, Andrei I. Evans, Jilly F. Kopp, Meghan Katzen, Jeremy Robichaud, Annette Atochina-Vasserman, Elena N. Li, Shanru Carl, Justine Babu, Apoorva Morley, Michael P. Cantu, Edward Beers, Michael F. Frank, David B. Morrisey, Edward E. Krymskaya, Vera P. |
description | Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in
tuberous sclerosis complex (TSC1/TSC2)
genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of
Tsc2
in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal
Tsc2
-deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype.
The cellular origins of lymphangioleiomyomatosis (LAM), a rare fatal lung disease, are poorly understood. Here the authors identify a mesenchymal cell hub coordinating the LAM phenotype and develop a LAM mouse model where they investigate the co-operative dysregulation of mTORC1 and WNT growth pathways in the sex- and age-specific changes leading to structural and functional decline. |
doi_str_mv | 10.1038/s41467-020-18979-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_920f2bde4ce048d5a6bf73943fc2fe6e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_920f2bde4ce048d5a6bf73943fc2fe6e</doaj_id><sourcerecordid>2458735109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhEvBXYvuChFZ8VKpUCZWz5djjrZfEXuxkRf89ZlNKywFfbM2888yM9TbNS4LfEszku8IJ70WLKW6JVEK1_ElzSjEnLRGUPX3wPmnOS9nhepgikvPnzQljpFNYyNPm-3R99XVDkLFzOJg5pIhCROMSt2iCAtHe3E6AXA4HKKjAzxaZ6JDZQutgD9FBnNF-GacUTb5FZc6LnZcMR5Vfoj0SHdgxRHjRPPNmLHB-d5813z59vN58aS-vPl9sPly2tuN4bjljopOW9ooKrpwcBiwVSNdRPwjcg6BC9Z4oY5gYKGG97bxiQ0eVY4Zgxc6ai5XrktnpfQ5TnU0nE_QxkPJWmzwHO4JWFHs6OOAWMK8tTD94wRRn3lIPPVTW-5W1X4YJnK37ZjM-gj7OxHCjt-mgRc9lz3AFvLkD5PRjgTLrKRQL42gipKVoyjspWLfO_fof6S4tOdavqipBOk6oEFVFV5XNqZQM_n4YgvVva-jVGrpaQx-toXktevVwjfuSP0aoArYKSk3FLeS_vf-D_QUrMMSs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471541277</pqid></control><display><type>article</type><title>mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Obraztsova, Kseniya ; Basil, Maria C. ; Rue, Ryan ; Sivakumar, Aravind ; Lin, Susan M. ; Mukhitov, Alexander R. ; Gritsiuta, Andrei I. ; Evans, Jilly F. ; Kopp, Meghan ; Katzen, Jeremy ; Robichaud, Annette ; Atochina-Vasserman, Elena N. ; Li, Shanru ; Carl, Justine ; Babu, Apoorva ; Morley, Michael P. ; Cantu, Edward ; Beers, Michael F. ; Frank, David B. ; Morrisey, Edward E. ; Krymskaya, Vera P.</creator><creatorcontrib>Obraztsova, Kseniya ; Basil, Maria C. ; Rue, Ryan ; Sivakumar, Aravind ; Lin, Susan M. ; Mukhitov, Alexander R. ; Gritsiuta, Andrei I. ; Evans, Jilly F. ; Kopp, Meghan ; Katzen, Jeremy ; Robichaud, Annette ; Atochina-Vasserman, Elena N. ; Li, Shanru ; Carl, Justine ; Babu, Apoorva ; Morley, Michael P. ; Cantu, Edward ; Beers, Michael F. ; Frank, David B. ; Morrisey, Edward E. ; Krymskaya, Vera P.</creatorcontrib><description>Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in
tuberous sclerosis complex (TSC1/TSC2)
genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of
Tsc2
in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal
Tsc2
-deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype.
The cellular origins of lymphangioleiomyomatosis (LAM), a rare fatal lung disease, are poorly understood. Here the authors identify a mesenchymal cell hub coordinating the LAM phenotype and develop a LAM mouse model where they investigate the co-operative dysregulation of mTORC1 and WNT growth pathways in the sex- and age-specific changes leading to structural and functional decline.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-18979-4</identifier><identifier>PMID: 33159078</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/1 ; 14/19 ; 14/35 ; 14/63 ; 38/22 ; 38/39 ; 38/47 ; 38/77 ; 38/90 ; 38/91 ; 631/136/1425 ; 631/80/304 ; 64/110 ; 64/60 ; 82/29 ; 82/51 ; Age ; Age composition ; Age Factors ; Aged ; Alveoli ; Animals ; Crosstalk ; Deactivation ; Female ; Gene expression ; Gene sequencing ; Genotype & phenotype ; Humanities and Social Sciences ; Humans ; Inactivation ; Lung - drug effects ; Lung - metabolism ; Lung - physiopathology ; Lung diseases ; Lymphangioleiomyomatosis - drug therapy ; Lymphangioleiomyomatosis - genetics ; Lymphangioleiomyomatosis - metabolism ; Lymphangioleiomyomatosis - physiopathology ; Male ; Mechanistic Target of Rapamycin Complex 1 - genetics ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mesenchyme ; Mesoderm - drug effects ; Mesoderm - metabolism ; Mice ; multidisciplinary ; Mutation ; Phenotypes ; Pulmonary functions ; Rapamycin ; Respiratory function ; Ribonucleic acid ; RNA ; Science ; Science (multidisciplinary) ; Sex ; Sex Factors ; Signal transduction ; Signaling ; Sirolimus - administration & dosage ; Structure-function relationships ; Suppressors ; TOR protein ; Tuberous sclerosis ; Tuberous Sclerosis Complex 2 Protein - genetics ; Tuberous Sclerosis Complex 2 Protein - metabolism ; Wnt protein ; Wnt Signaling Pathway</subject><ispartof>Nature communications, 2020-11, Vol.11 (1), p.5640-5640, Article 5640</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093</citedby><cites>FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093</cites><orcidid>0000-0002-3064-2069 ; 0000-0001-6443-0788 ; 0000-0003-2265-9992 ; 0000-0001-7950-7004 ; 0000-0002-0584-4486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471541277/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471541277?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33159078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Obraztsova, Kseniya</creatorcontrib><creatorcontrib>Basil, Maria C.</creatorcontrib><creatorcontrib>Rue, Ryan</creatorcontrib><creatorcontrib>Sivakumar, Aravind</creatorcontrib><creatorcontrib>Lin, Susan M.</creatorcontrib><creatorcontrib>Mukhitov, Alexander R.</creatorcontrib><creatorcontrib>Gritsiuta, Andrei I.</creatorcontrib><creatorcontrib>Evans, Jilly F.</creatorcontrib><creatorcontrib>Kopp, Meghan</creatorcontrib><creatorcontrib>Katzen, Jeremy</creatorcontrib><creatorcontrib>Robichaud, Annette</creatorcontrib><creatorcontrib>Atochina-Vasserman, Elena N.</creatorcontrib><creatorcontrib>Li, Shanru</creatorcontrib><creatorcontrib>Carl, Justine</creatorcontrib><creatorcontrib>Babu, Apoorva</creatorcontrib><creatorcontrib>Morley, Michael P.</creatorcontrib><creatorcontrib>Cantu, Edward</creatorcontrib><creatorcontrib>Beers, Michael F.</creatorcontrib><creatorcontrib>Frank, David B.</creatorcontrib><creatorcontrib>Morrisey, Edward E.</creatorcontrib><creatorcontrib>Krymskaya, Vera P.</creatorcontrib><title>mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in
tuberous sclerosis complex (TSC1/TSC2)
genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of
Tsc2
in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal
Tsc2
-deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype.
The cellular origins of lymphangioleiomyomatosis (LAM), a rare fatal lung disease, are poorly understood. Here the authors identify a mesenchymal cell hub coordinating the LAM phenotype and develop a LAM mouse model where they investigate the co-operative dysregulation of mTORC1 and WNT growth pathways in the sex- and age-specific changes leading to structural and functional decline.</description><subject>14/1</subject><subject>14/19</subject><subject>14/35</subject><subject>14/63</subject><subject>38/22</subject><subject>38/39</subject><subject>38/47</subject><subject>38/77</subject><subject>38/90</subject><subject>38/91</subject><subject>631/136/1425</subject><subject>631/80/304</subject><subject>64/110</subject><subject>64/60</subject><subject>82/29</subject><subject>82/51</subject><subject>Age</subject><subject>Age composition</subject><subject>Age Factors</subject><subject>Aged</subject><subject>Alveoli</subject><subject>Animals</subject><subject>Crosstalk</subject><subject>Deactivation</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genotype & phenotype</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inactivation</subject><subject>Lung - drug effects</subject><subject>Lung - metabolism</subject><subject>Lung - physiopathology</subject><subject>Lung diseases</subject><subject>Lymphangioleiomyomatosis - drug therapy</subject><subject>Lymphangioleiomyomatosis - genetics</subject><subject>Lymphangioleiomyomatosis - metabolism</subject><subject>Lymphangioleiomyomatosis - physiopathology</subject><subject>Male</subject><subject>Mechanistic Target of Rapamycin Complex 1 - genetics</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mesenchyme</subject><subject>Mesoderm - drug effects</subject><subject>Mesoderm - metabolism</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Phenotypes</subject><subject>Pulmonary functions</subject><subject>Rapamycin</subject><subject>Respiratory function</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sex</subject><subject>Sex Factors</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Sirolimus - administration & dosage</subject><subject>Structure-function relationships</subject><subject>Suppressors</subject><subject>TOR protein</subject><subject>Tuberous sclerosis</subject><subject>Tuberous Sclerosis Complex 2 Protein - genetics</subject><subject>Tuberous Sclerosis Complex 2 Protein - metabolism</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhEvBXYvuChFZ8VKpUCZWz5djjrZfEXuxkRf89ZlNKywFfbM2888yM9TbNS4LfEszku8IJ70WLKW6JVEK1_ElzSjEnLRGUPX3wPmnOS9nhepgikvPnzQljpFNYyNPm-3R99XVDkLFzOJg5pIhCROMSt2iCAtHe3E6AXA4HKKjAzxaZ6JDZQutgD9FBnNF-GacUTb5FZc6LnZcMR5Vfoj0SHdgxRHjRPPNmLHB-d5813z59vN58aS-vPl9sPly2tuN4bjljopOW9ooKrpwcBiwVSNdRPwjcg6BC9Z4oY5gYKGG97bxiQ0eVY4Zgxc6ai5XrktnpfQ5TnU0nE_QxkPJWmzwHO4JWFHs6OOAWMK8tTD94wRRn3lIPPVTW-5W1X4YJnK37ZjM-gj7OxHCjt-mgRc9lz3AFvLkD5PRjgTLrKRQL42gipKVoyjspWLfO_fof6S4tOdavqipBOk6oEFVFV5XNqZQM_n4YgvVva-jVGrpaQx-toXktevVwjfuSP0aoArYKSk3FLeS_vf-D_QUrMMSs</recordid><startdate>20201106</startdate><enddate>20201106</enddate><creator>Obraztsova, Kseniya</creator><creator>Basil, Maria C.</creator><creator>Rue, Ryan</creator><creator>Sivakumar, Aravind</creator><creator>Lin, Susan M.</creator><creator>Mukhitov, Alexander R.</creator><creator>Gritsiuta, Andrei I.</creator><creator>Evans, Jilly F.</creator><creator>Kopp, Meghan</creator><creator>Katzen, Jeremy</creator><creator>Robichaud, Annette</creator><creator>Atochina-Vasserman, Elena N.</creator><creator>Li, Shanru</creator><creator>Carl, Justine</creator><creator>Babu, Apoorva</creator><creator>Morley, Michael P.</creator><creator>Cantu, Edward</creator><creator>Beers, Michael F.</creator><creator>Frank, David B.</creator><creator>Morrisey, Edward E.</creator><creator>Krymskaya, Vera P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3064-2069</orcidid><orcidid>https://orcid.org/0000-0001-6443-0788</orcidid><orcidid>https://orcid.org/0000-0003-2265-9992</orcidid><orcidid>https://orcid.org/0000-0001-7950-7004</orcidid><orcidid>https://orcid.org/0000-0002-0584-4486</orcidid></search><sort><creationdate>20201106</creationdate><title>mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline</title><author>Obraztsova, Kseniya ; Basil, Maria C. ; Rue, Ryan ; Sivakumar, Aravind ; Lin, Susan M. ; Mukhitov, Alexander R. ; Gritsiuta, Andrei I. ; Evans, Jilly F. ; Kopp, Meghan ; Katzen, Jeremy ; Robichaud, Annette ; Atochina-Vasserman, Elena N. ; Li, Shanru ; Carl, Justine ; Babu, Apoorva ; Morley, Michael P. ; Cantu, Edward ; Beers, Michael F. ; Frank, David B. ; Morrisey, Edward E. ; Krymskaya, Vera P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14/1</topic><topic>14/19</topic><topic>14/35</topic><topic>14/63</topic><topic>38/22</topic><topic>38/39</topic><topic>38/47</topic><topic>38/77</topic><topic>38/90</topic><topic>38/91</topic><topic>631/136/1425</topic><topic>631/80/304</topic><topic>64/110</topic><topic>64/60</topic><topic>82/29</topic><topic>82/51</topic><topic>Age</topic><topic>Age composition</topic><topic>Age Factors</topic><topic>Aged</topic><topic>Alveoli</topic><topic>Animals</topic><topic>Crosstalk</topic><topic>Deactivation</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genotype & phenotype</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inactivation</topic><topic>Lung - drug effects</topic><topic>Lung - metabolism</topic><topic>Lung - physiopathology</topic><topic>Lung diseases</topic><topic>Lymphangioleiomyomatosis - drug therapy</topic><topic>Lymphangioleiomyomatosis - genetics</topic><topic>Lymphangioleiomyomatosis - metabolism</topic><topic>Lymphangioleiomyomatosis - physiopathology</topic><topic>Male</topic><topic>Mechanistic Target of Rapamycin Complex 1 - genetics</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mesenchyme</topic><topic>Mesoderm - drug effects</topic><topic>Mesoderm - metabolism</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Phenotypes</topic><topic>Pulmonary functions</topic><topic>Rapamycin</topic><topic>Respiratory function</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sex</topic><topic>Sex Factors</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Sirolimus - administration & dosage</topic><topic>Structure-function relationships</topic><topic>Suppressors</topic><topic>TOR protein</topic><topic>Tuberous sclerosis</topic><topic>Tuberous Sclerosis Complex 2 Protein - genetics</topic><topic>Tuberous Sclerosis Complex 2 Protein - metabolism</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obraztsova, Kseniya</creatorcontrib><creatorcontrib>Basil, Maria C.</creatorcontrib><creatorcontrib>Rue, Ryan</creatorcontrib><creatorcontrib>Sivakumar, Aravind</creatorcontrib><creatorcontrib>Lin, Susan M.</creatorcontrib><creatorcontrib>Mukhitov, Alexander R.</creatorcontrib><creatorcontrib>Gritsiuta, Andrei I.</creatorcontrib><creatorcontrib>Evans, Jilly F.</creatorcontrib><creatorcontrib>Kopp, Meghan</creatorcontrib><creatorcontrib>Katzen, Jeremy</creatorcontrib><creatorcontrib>Robichaud, Annette</creatorcontrib><creatorcontrib>Atochina-Vasserman, Elena N.</creatorcontrib><creatorcontrib>Li, Shanru</creatorcontrib><creatorcontrib>Carl, Justine</creatorcontrib><creatorcontrib>Babu, Apoorva</creatorcontrib><creatorcontrib>Morley, Michael P.</creatorcontrib><creatorcontrib>Cantu, Edward</creatorcontrib><creatorcontrib>Beers, Michael F.</creatorcontrib><creatorcontrib>Frank, David B.</creatorcontrib><creatorcontrib>Morrisey, Edward E.</creatorcontrib><creatorcontrib>Krymskaya, Vera P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obraztsova, Kseniya</au><au>Basil, Maria C.</au><au>Rue, Ryan</au><au>Sivakumar, Aravind</au><au>Lin, Susan M.</au><au>Mukhitov, Alexander R.</au><au>Gritsiuta, Andrei I.</au><au>Evans, Jilly F.</au><au>Kopp, Meghan</au><au>Katzen, Jeremy</au><au>Robichaud, Annette</au><au>Atochina-Vasserman, Elena N.</au><au>Li, Shanru</au><au>Carl, Justine</au><au>Babu, Apoorva</au><au>Morley, Michael P.</au><au>Cantu, Edward</au><au>Beers, Michael F.</au><au>Frank, David B.</au><au>Morrisey, Edward E.</au><au>Krymskaya, Vera P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-11-06</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>5640</spage><epage>5640</epage><pages>5640-5640</pages><artnum>5640</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in
tuberous sclerosis complex (TSC1/TSC2)
genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of
Tsc2
in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal
Tsc2
-deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype.
The cellular origins of lymphangioleiomyomatosis (LAM), a rare fatal lung disease, are poorly understood. Here the authors identify a mesenchymal cell hub coordinating the LAM phenotype and develop a LAM mouse model where they investigate the co-operative dysregulation of mTORC1 and WNT growth pathways in the sex- and age-specific changes leading to structural and functional decline.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33159078</pmid><doi>10.1038/s41467-020-18979-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3064-2069</orcidid><orcidid>https://orcid.org/0000-0001-6443-0788</orcidid><orcidid>https://orcid.org/0000-0003-2265-9992</orcidid><orcidid>https://orcid.org/0000-0001-7950-7004</orcidid><orcidid>https://orcid.org/0000-0002-0584-4486</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-11, Vol.11 (1), p.5640-5640, Article 5640 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_920f2bde4ce048d5a6bf73943fc2fe6e |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 14/1 14/19 14/35 14/63 38/22 38/39 38/47 38/77 38/90 38/91 631/136/1425 631/80/304 64/110 64/60 82/29 82/51 Age Age composition Age Factors Aged Alveoli Animals Crosstalk Deactivation Female Gene expression Gene sequencing Genotype & phenotype Humanities and Social Sciences Humans Inactivation Lung - drug effects Lung - metabolism Lung - physiopathology Lung diseases Lymphangioleiomyomatosis - drug therapy Lymphangioleiomyomatosis - genetics Lymphangioleiomyomatosis - metabolism Lymphangioleiomyomatosis - physiopathology Male Mechanistic Target of Rapamycin Complex 1 - genetics Mechanistic Target of Rapamycin Complex 1 - metabolism Mesenchyme Mesoderm - drug effects Mesoderm - metabolism Mice multidisciplinary Mutation Phenotypes Pulmonary functions Rapamycin Respiratory function Ribonucleic acid RNA Science Science (multidisciplinary) Sex Sex Factors Signal transduction Signaling Sirolimus - administration & dosage Structure-function relationships Suppressors TOR protein Tuberous sclerosis Tuberous Sclerosis Complex 2 Protein - genetics Tuberous Sclerosis Complex 2 Protein - metabolism Wnt protein Wnt Signaling Pathway |
title | mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC1%20activation%20in%20lung%20mesenchyme%20drives%20sex-%20and%20age-dependent%20pulmonary%20structure%20and%20function%20decline&rft.jtitle=Nature%20communications&rft.au=Obraztsova,%20Kseniya&rft.date=2020-11-06&rft.volume=11&rft.issue=1&rft.spage=5640&rft.epage=5640&rft.pages=5640-5640&rft.artnum=5640&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-18979-4&rft_dat=%3Cproquest_doaj_%3E2458735109%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-433758c2692749d8bb089e8d52fb706e72796f19aa37b2136c5f93b529d3a1093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471541277&rft_id=info:pmid/33159078&rfr_iscdi=true |