Loading…
Structural and optical properties of the Agn-tyrosine complexes (n = 3-12): a density functional theory study
We study the optical properties of Agn (n = 3-12) neutral clusters and their coordination with a tyrosine (Tyr) molecule. A global search strategy coupled with density functional theory (DFT) computations explored the potential energy surface. Adsorption energy calculations predicted that Tyr coordi...
Saved in:
Published in: | Royal Society open science 2023-12, Vol.10 (12), p.230908-230908 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the optical properties of Agn (n = 3-12) neutral clusters and their coordination with a tyrosine (Tyr) molecule. A global search strategy coupled with density functional theory (DFT) computations explored the potential energy surface. Adsorption energy calculations predicted that Tyr coordination stabilizes the metal clusters, favouring the Agn-Tyr complexes with an even number of silver atoms. For the Agn low-lying isomers, the general shape and the major transitions of the calculated time dependent-DFT (TD-DFT) absorption spectra align with those of previous reports measured in an argon environment. We use the analysis of non-covalent interactions to identify the specific interactions between each silver cluster and functional groups of Tyr. The TD-DFT absorption spectra for the Agn-Tyr complexes showed that Tyr significantly modifies the optical properties of the coordinated silver clusters and affects the smaller systems to a greater extent. The optical absorption results of the bare Agn clusters and the Agn-Tyr complexes are compared and discussed in detail. |
---|---|
ISSN: | 2054-5703 2054-5703 |
DOI: | 10.1098/rsos.230908 |