Loading…
Optimal Statistical Analyses of Bell Experiments
We show how both smaller and more reliable p-values can be computed in Bell-type experiments by using statistical deviations from no-signalling equalities to reduce statistical noise in the estimation of Bell’s S or Eberhard’s J. Further improvement was obtained by using the Wilks likelihood ratio t...
Saved in:
Published in: | AppliedMath 2023-06, Vol.3 (2), p.446-460 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c238t-e47e1d05ae90d90f5773b890a32e48ce89f82ed08c51a55af8055cab1945a9c03 |
container_end_page | 460 |
container_issue | 2 |
container_start_page | 446 |
container_title | AppliedMath |
container_volume | 3 |
creator | Gill, Richard D. |
description | We show how both smaller and more reliable p-values can be computed in Bell-type experiments by using statistical deviations from no-signalling equalities to reduce statistical noise in the estimation of Bell’s S or Eberhard’s J. Further improvement was obtained by using the Wilks likelihood ratio test based on the four tetranomially distributed vectors of counts of the four different outcome combinations, one 4-vector for each of the four setting combinations. The methodology was illustrated by application to the loophole-free Bell experiments of 2015 and 2016 performed in Delft and Munich, at NIST, and in Vienna, respectively, and also to the earlier (1998) Innsbruck experiment of Weihs et al. and the recent (2022) Munich experiment of Zhang et al., which investigates the use of a loophole-free Bell experiment as part of a protocol for device-independent quantum key distribution (DIQKD). |
doi_str_mv | 10.3390/appliedmath3020023 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_923ba6b20cd64cea8015bd019cde5b5e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_923ba6b20cd64cea8015bd019cde5b5e</doaj_id><sourcerecordid>oai_doaj_org_article_923ba6b20cd64cea8015bd019cde5b5e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-e47e1d05ae90d90f5773b890a32e48ce89f82ed08c51a55af8055cab1945a9c03</originalsourceid><addsrcrecordid>eNplkFFLwzAUhYMoOOb-gE_9A9WbpGmTxzmmDgZ7UJ_DbXKrHelamjy4f291MgSf7uFy-M7hMHbL4U5KA_c4DKEl32H6kCAAhLxgM1FWMjcGzOUffc0WMe5hsmhVyUrPGOyG1HYYspeEqY2pdZNeHjAcI8Wsb7IHCiFbfw40th0dUrxhVw2GSIvfO2dvj-vX1XO-3T1tVstt7oTUKaeiIu5BIRnwBhpVVbLWBlAKKrQjbRotyIN2iqNS2GhQymHNTaHQOJBztjlxfY97O0zpOB5tj639efTju8VxqhvIGiFrLGsBzpeFI9TAVe2BG-dJ1Yomljix3NjHOFJz5nGw3xPa_xPKL3CNZxg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal Statistical Analyses of Bell Experiments</title><source>DOAJ Directory of Open Access Journals</source><creator>Gill, Richard D.</creator><creatorcontrib>Gill, Richard D.</creatorcontrib><description>We show how both smaller and more reliable p-values can be computed in Bell-type experiments by using statistical deviations from no-signalling equalities to reduce statistical noise in the estimation of Bell’s S or Eberhard’s J. Further improvement was obtained by using the Wilks likelihood ratio test based on the four tetranomially distributed vectors of counts of the four different outcome combinations, one 4-vector for each of the four setting combinations. The methodology was illustrated by application to the loophole-free Bell experiments of 2015 and 2016 performed in Delft and Munich, at NIST, and in Vienna, respectively, and also to the earlier (1998) Innsbruck experiment of Weihs et al. and the recent (2022) Munich experiment of Zhang et al., which investigates the use of a loophole-free Bell experiment as part of a protocol for device-independent quantum key distribution (DIQKD).</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath3020023</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Bell experiment ; Bell-CHSH inequality ; maximum likelihood estimation ; quantum entanglement ; testing statistical hypotheses ; Wilks generalized likelihood ratio test</subject><ispartof>AppliedMath, 2023-06, Vol.3 (2), p.446-460</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-e47e1d05ae90d90f5773b890a32e48ce89f82ed08c51a55af8055cab1945a9c03</cites><orcidid>0000-0001-5821-9986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Gill, Richard D.</creatorcontrib><title>Optimal Statistical Analyses of Bell Experiments</title><title>AppliedMath</title><description>We show how both smaller and more reliable p-values can be computed in Bell-type experiments by using statistical deviations from no-signalling equalities to reduce statistical noise in the estimation of Bell’s S or Eberhard’s J. Further improvement was obtained by using the Wilks likelihood ratio test based on the four tetranomially distributed vectors of counts of the four different outcome combinations, one 4-vector for each of the four setting combinations. The methodology was illustrated by application to the loophole-free Bell experiments of 2015 and 2016 performed in Delft and Munich, at NIST, and in Vienna, respectively, and also to the earlier (1998) Innsbruck experiment of Weihs et al. and the recent (2022) Munich experiment of Zhang et al., which investigates the use of a loophole-free Bell experiment as part of a protocol for device-independent quantum key distribution (DIQKD).</description><subject>Bell experiment</subject><subject>Bell-CHSH inequality</subject><subject>maximum likelihood estimation</subject><subject>quantum entanglement</subject><subject>testing statistical hypotheses</subject><subject>Wilks generalized likelihood ratio test</subject><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkFFLwzAUhYMoOOb-gE_9A9WbpGmTxzmmDgZ7UJ_DbXKrHelamjy4f291MgSf7uFy-M7hMHbL4U5KA_c4DKEl32H6kCAAhLxgM1FWMjcGzOUffc0WMe5hsmhVyUrPGOyG1HYYspeEqY2pdZNeHjAcI8Wsb7IHCiFbfw40th0dUrxhVw2GSIvfO2dvj-vX1XO-3T1tVstt7oTUKaeiIu5BIRnwBhpVVbLWBlAKKrQjbRotyIN2iqNS2GhQymHNTaHQOJBztjlxfY97O0zpOB5tj639efTju8VxqhvIGiFrLGsBzpeFI9TAVe2BG-dJ1Yomljix3NjHOFJz5nGw3xPa_xPKL3CNZxg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Gill, Richard D.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5821-9986</orcidid></search><sort><creationdate>20230601</creationdate><title>Optimal Statistical Analyses of Bell Experiments</title><author>Gill, Richard D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-e47e1d05ae90d90f5773b890a32e48ce89f82ed08c51a55af8055cab1945a9c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bell experiment</topic><topic>Bell-CHSH inequality</topic><topic>maximum likelihood estimation</topic><topic>quantum entanglement</topic><topic>testing statistical hypotheses</topic><topic>Wilks generalized likelihood ratio test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gill, Richard D.</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gill, Richard D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Statistical Analyses of Bell Experiments</atitle><jtitle>AppliedMath</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>3</volume><issue>2</issue><spage>446</spage><epage>460</epage><pages>446-460</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>We show how both smaller and more reliable p-values can be computed in Bell-type experiments by using statistical deviations from no-signalling equalities to reduce statistical noise in the estimation of Bell’s S or Eberhard’s J. Further improvement was obtained by using the Wilks likelihood ratio test based on the four tetranomially distributed vectors of counts of the four different outcome combinations, one 4-vector for each of the four setting combinations. The methodology was illustrated by application to the loophole-free Bell experiments of 2015 and 2016 performed in Delft and Munich, at NIST, and in Vienna, respectively, and also to the earlier (1998) Innsbruck experiment of Weihs et al. and the recent (2022) Munich experiment of Zhang et al., which investigates the use of a loophole-free Bell experiment as part of a protocol for device-independent quantum key distribution (DIQKD).</abstract><pub>MDPI AG</pub><doi>10.3390/appliedmath3020023</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5821-9986</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-9909 |
ispartof | AppliedMath, 2023-06, Vol.3 (2), p.446-460 |
issn | 2673-9909 2673-9909 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_923ba6b20cd64cea8015bd019cde5b5e |
source | DOAJ Directory of Open Access Journals |
subjects | Bell experiment Bell-CHSH inequality maximum likelihood estimation quantum entanglement testing statistical hypotheses Wilks generalized likelihood ratio test |
title | Optimal Statistical Analyses of Bell Experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Statistical%20Analyses%20of%20Bell%20Experiments&rft.jtitle=AppliedMath&rft.au=Gill,%20Richard%20D.&rft.date=2023-06-01&rft.volume=3&rft.issue=2&rft.spage=446&rft.epage=460&rft.pages=446-460&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath3020023&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_923ba6b20cd64cea8015bd019cde5b5e%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-e47e1d05ae90d90f5773b890a32e48ce89f82ed08c51a55af8055cab1945a9c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |