Loading…
Renormalization, Isogenies, and Rational Symmetries of Differential Equations
We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.
Saved in:
Published in: | Advances in mathematical physics 2010-01, Vol.2010 (2010), p.1-44 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 44 |
container_issue | 2010 |
container_start_page | 1 |
container_title | Advances in mathematical physics |
container_volume | 2010 |
creator | Boukraa, S. Bostan, A. Hassani, S. Maillard, J.-M. Weil, J.-A. Zenine, N. Abarenkova, N. |
description | We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group. |
doi_str_mv | 10.1155/2010/941560 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_92511522b68143ab920b85561879ebb6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_92511522b68143ab920b85561879ebb6</doaj_id><sourcerecordid>2285067691</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-959b5de5a5cdb67a6210e755e905b18d4b411db9048561b8ce24e9cec9bdf2a43</originalsourceid><addsrcrecordid>eNpdkd1LHDEUxYdSoWJ96nNh6FNbXM3Ndx7Fal3YUrD6HJKZOzbLzESTWYv9683uyEKblxvO_XEO3FNVH4CcAghxRgmQM8NBSPKmOgSp1cIAM2_3f0reVcc5r0l5zAhpxGH14wbHmAbXh79uCnE8qZc53uMYMJ_Ubmzrm53s-vrX8zDglMqijl39LXQdJhynUFaXj5sdld9XB53rMx6_zqPq7ury9uJ6sfr5fXlxvlo4zmFaGGG8aFE40bReKicpEFRCoCHCg2655wCtN4RrIcHrBilH02BjfNtRx9lRtZx92-jW9iGFwaVnG12wOyGme-vSFJoeraGiXIdSLzVw5ryhxGtRbLUy6L0sXl9mr9-u_8fq-nxltxohkjHN1RMU9vPMPqT4uME82SHkBvvejRg32YJUwJSihhb003_oOm5SOWS2JZ5rpdkW-vqaHcbW_Qn7fCB226nddmrnTgv8cYaxINi5PSyAEErZC1YAmbs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855487832</pqid></control><display><type>article</type><title>Renormalization, Isogenies, and Rational Symmetries of Differential Equations</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Boukraa, S. ; Bostan, A. ; Hassani, S. ; Maillard, J.-M. ; Weil, J.-A. ; Zenine, N. ; Abarenkova, N.</creator><contributor>Kerner, Richard</contributor><creatorcontrib>Boukraa, S. ; Bostan, A. ; Hassani, S. ; Maillard, J.-M. ; Weil, J.-A. ; Zenine, N. ; Abarenkova, N. ; Kerner, Richard</creatorcontrib><description>We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2010/941560</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Differential equations ; Dynamical systems ; Generators ; Illustrations ; Leaves ; Magnetic fields ; Mathematical analysis ; Phase transitions ; Representations ; Symmetry ; Transformations ; Variables</subject><ispartof>Advances in mathematical physics, 2010-01, Vol.2010 (2010), p.1-44</ispartof><rights>Copyright © 2010</rights><rights>Copyright © 2010 A. Bostan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8233-8501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/855487832/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/855487832?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00633847$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Kerner, Richard</contributor><creatorcontrib>Boukraa, S.</creatorcontrib><creatorcontrib>Bostan, A.</creatorcontrib><creatorcontrib>Hassani, S.</creatorcontrib><creatorcontrib>Maillard, J.-M.</creatorcontrib><creatorcontrib>Weil, J.-A.</creatorcontrib><creatorcontrib>Zenine, N.</creatorcontrib><creatorcontrib>Abarenkova, N.</creatorcontrib><title>Renormalization, Isogenies, and Rational Symmetries of Differential Equations</title><title>Advances in mathematical physics</title><description>We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.</description><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Generators</subject><subject>Illustrations</subject><subject>Leaves</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Phase transitions</subject><subject>Representations</subject><subject>Symmetry</subject><subject>Transformations</subject><subject>Variables</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkd1LHDEUxYdSoWJ96nNh6FNbXM3Ndx7Fal3YUrD6HJKZOzbLzESTWYv9683uyEKblxvO_XEO3FNVH4CcAghxRgmQM8NBSPKmOgSp1cIAM2_3f0reVcc5r0l5zAhpxGH14wbHmAbXh79uCnE8qZc53uMYMJ_Ubmzrm53s-vrX8zDglMqijl39LXQdJhynUFaXj5sdld9XB53rMx6_zqPq7ury9uJ6sfr5fXlxvlo4zmFaGGG8aFE40bReKicpEFRCoCHCg2655wCtN4RrIcHrBilH02BjfNtRx9lRtZx92-jW9iGFwaVnG12wOyGme-vSFJoeraGiXIdSLzVw5ryhxGtRbLUy6L0sXl9mr9-u_8fq-nxltxohkjHN1RMU9vPMPqT4uME82SHkBvvejRg32YJUwJSihhb003_oOm5SOWS2JZ5rpdkW-vqaHcbW_Qn7fCB226nddmrnTgv8cYaxINi5PSyAEErZC1YAmbs</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Boukraa, S.</creator><creator>Bostan, A.</creator><creator>Hassani, S.</creator><creator>Maillard, J.-M.</creator><creator>Weil, J.-A.</creator><creator>Zenine, N.</creator><creator>Abarenkova, N.</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8233-8501</orcidid></search><sort><creationdate>20100101</creationdate><title>Renormalization, Isogenies, and Rational Symmetries of Differential Equations</title><author>Boukraa, S. ; Bostan, A. ; Hassani, S. ; Maillard, J.-M. ; Weil, J.-A. ; Zenine, N. ; Abarenkova, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-959b5de5a5cdb67a6210e755e905b18d4b411db9048561b8ce24e9cec9bdf2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Generators</topic><topic>Illustrations</topic><topic>Leaves</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Phase transitions</topic><topic>Representations</topic><topic>Symmetry</topic><topic>Transformations</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boukraa, S.</creatorcontrib><creatorcontrib>Bostan, A.</creatorcontrib><creatorcontrib>Hassani, S.</creatorcontrib><creatorcontrib>Maillard, J.-M.</creatorcontrib><creatorcontrib>Weil, J.-A.</creatorcontrib><creatorcontrib>Zenine, N.</creatorcontrib><creatorcontrib>Abarenkova, N.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boukraa, S.</au><au>Bostan, A.</au><au>Hassani, S.</au><au>Maillard, J.-M.</au><au>Weil, J.-A.</au><au>Zenine, N.</au><au>Abarenkova, N.</au><au>Kerner, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renormalization, Isogenies, and Rational Symmetries of Differential Equations</atitle><jtitle>Advances in mathematical physics</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><issue>2010</issue><spage>1</spage><epage>44</epage><pages>1-44</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2010/941560</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0002-8233-8501</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9120 |
ispartof | Advances in mathematical physics, 2010-01, Vol.2010 (2010), p.1-44 |
issn | 1687-9120 1687-9139 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_92511522b68143ab920b85561879ebb6 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Differential equations Dynamical systems Generators Illustrations Leaves Magnetic fields Mathematical analysis Phase transitions Representations Symmetry Transformations Variables |
title | Renormalization, Isogenies, and Rational Symmetries of Differential Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormalization,%20Isogenies,%20and%20Rational%20Symmetries%20of%20Differential%20Equations&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Boukraa,%20S.&rft.date=2010-01-01&rft.volume=2010&rft.issue=2010&rft.spage=1&rft.epage=44&rft.pages=1-44&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2010/941560&rft_dat=%3Cproquest_doaj_%3E2285067691%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a441t-959b5de5a5cdb67a6210e755e905b18d4b411db9048561b8ce24e9cec9bdf2a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855487832&rft_id=info:pmid/&rfr_iscdi=true |