Loading…

Renormalization, Isogenies, and Rational Symmetries of Differential Equations

We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.

Saved in:
Bibliographic Details
Published in:Advances in mathematical physics 2010-01, Vol.2010 (2010), p.1-44
Main Authors: Boukraa, S., Bostan, A., Hassani, S., Maillard, J.-M., Weil, J.-A., Zenine, N., Abarenkova, N.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 44
container_issue 2010
container_start_page 1
container_title Advances in mathematical physics
container_volume 2010
creator Boukraa, S.
Bostan, A.
Hassani, S.
Maillard, J.-M.
Weil, J.-A.
Zenine, N.
Abarenkova, N.
description We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.
doi_str_mv 10.1155/2010/941560
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_92511522b68143ab920b85561879ebb6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_92511522b68143ab920b85561879ebb6</doaj_id><sourcerecordid>2285067691</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-959b5de5a5cdb67a6210e755e905b18d4b411db9048561b8ce24e9cec9bdf2a43</originalsourceid><addsrcrecordid>eNpdkd1LHDEUxYdSoWJ96nNh6FNbXM3Ndx7Fal3YUrD6HJKZOzbLzESTWYv9683uyEKblxvO_XEO3FNVH4CcAghxRgmQM8NBSPKmOgSp1cIAM2_3f0reVcc5r0l5zAhpxGH14wbHmAbXh79uCnE8qZc53uMYMJ_Ubmzrm53s-vrX8zDglMqijl39LXQdJhynUFaXj5sdld9XB53rMx6_zqPq7ury9uJ6sfr5fXlxvlo4zmFaGGG8aFE40bReKicpEFRCoCHCg2655wCtN4RrIcHrBilH02BjfNtRx9lRtZx92-jW9iGFwaVnG12wOyGme-vSFJoeraGiXIdSLzVw5ryhxGtRbLUy6L0sXl9mr9-u_8fq-nxltxohkjHN1RMU9vPMPqT4uME82SHkBvvejRg32YJUwJSihhb003_oOm5SOWS2JZ5rpdkW-vqaHcbW_Qn7fCB226nddmrnTgv8cYaxINi5PSyAEErZC1YAmbs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855487832</pqid></control><display><type>article</type><title>Renormalization, Isogenies, and Rational Symmetries of Differential Equations</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Boukraa, S. ; Bostan, A. ; Hassani, S. ; Maillard, J.-M. ; Weil, J.-A. ; Zenine, N. ; Abarenkova, N.</creator><contributor>Kerner, Richard</contributor><creatorcontrib>Boukraa, S. ; Bostan, A. ; Hassani, S. ; Maillard, J.-M. ; Weil, J.-A. ; Zenine, N. ; Abarenkova, N. ; Kerner, Richard</creatorcontrib><description>We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2010/941560</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Differential equations ; Dynamical systems ; Generators ; Illustrations ; Leaves ; Magnetic fields ; Mathematical analysis ; Phase transitions ; Representations ; Symmetry ; Transformations ; Variables</subject><ispartof>Advances in mathematical physics, 2010-01, Vol.2010 (2010), p.1-44</ispartof><rights>Copyright © 2010</rights><rights>Copyright © 2010 A. Bostan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8233-8501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/855487832/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/855487832?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00633847$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Kerner, Richard</contributor><creatorcontrib>Boukraa, S.</creatorcontrib><creatorcontrib>Bostan, A.</creatorcontrib><creatorcontrib>Hassani, S.</creatorcontrib><creatorcontrib>Maillard, J.-M.</creatorcontrib><creatorcontrib>Weil, J.-A.</creatorcontrib><creatorcontrib>Zenine, N.</creatorcontrib><creatorcontrib>Abarenkova, N.</creatorcontrib><title>Renormalization, Isogenies, and Rational Symmetries of Differential Equations</title><title>Advances in mathematical physics</title><description>We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.</description><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Generators</subject><subject>Illustrations</subject><subject>Leaves</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Phase transitions</subject><subject>Representations</subject><subject>Symmetry</subject><subject>Transformations</subject><subject>Variables</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkd1LHDEUxYdSoWJ96nNh6FNbXM3Ndx7Fal3YUrD6HJKZOzbLzESTWYv9683uyEKblxvO_XEO3FNVH4CcAghxRgmQM8NBSPKmOgSp1cIAM2_3f0reVcc5r0l5zAhpxGH14wbHmAbXh79uCnE8qZc53uMYMJ_Ubmzrm53s-vrX8zDglMqijl39LXQdJhynUFaXj5sdld9XB53rMx6_zqPq7ury9uJ6sfr5fXlxvlo4zmFaGGG8aFE40bReKicpEFRCoCHCg2655wCtN4RrIcHrBilH02BjfNtRx9lRtZx92-jW9iGFwaVnG12wOyGme-vSFJoeraGiXIdSLzVw5ryhxGtRbLUy6L0sXl9mr9-u_8fq-nxltxohkjHN1RMU9vPMPqT4uME82SHkBvvejRg32YJUwJSihhb003_oOm5SOWS2JZ5rpdkW-vqaHcbW_Qn7fCB226nddmrnTgv8cYaxINi5PSyAEErZC1YAmbs</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Boukraa, S.</creator><creator>Bostan, A.</creator><creator>Hassani, S.</creator><creator>Maillard, J.-M.</creator><creator>Weil, J.-A.</creator><creator>Zenine, N.</creator><creator>Abarenkova, N.</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8233-8501</orcidid></search><sort><creationdate>20100101</creationdate><title>Renormalization, Isogenies, and Rational Symmetries of Differential Equations</title><author>Boukraa, S. ; Bostan, A. ; Hassani, S. ; Maillard, J.-M. ; Weil, J.-A. ; Zenine, N. ; Abarenkova, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-959b5de5a5cdb67a6210e755e905b18d4b411db9048561b8ce24e9cec9bdf2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Generators</topic><topic>Illustrations</topic><topic>Leaves</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Phase transitions</topic><topic>Representations</topic><topic>Symmetry</topic><topic>Transformations</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boukraa, S.</creatorcontrib><creatorcontrib>Bostan, A.</creatorcontrib><creatorcontrib>Hassani, S.</creatorcontrib><creatorcontrib>Maillard, J.-M.</creatorcontrib><creatorcontrib>Weil, J.-A.</creatorcontrib><creatorcontrib>Zenine, N.</creatorcontrib><creatorcontrib>Abarenkova, N.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boukraa, S.</au><au>Bostan, A.</au><au>Hassani, S.</au><au>Maillard, J.-M.</au><au>Weil, J.-A.</au><au>Zenine, N.</au><au>Abarenkova, N.</au><au>Kerner, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renormalization, Isogenies, and Rational Symmetries of Differential Equations</atitle><jtitle>Advances in mathematical physics</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><issue>2010</issue><spage>1</spage><epage>44</epage><pages>1-44</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2010/941560</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0002-8233-8501</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9120
ispartof Advances in mathematical physics, 2010-01, Vol.2010 (2010), p.1-44
issn 1687-9120
1687-9139
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_92511522b68143ab920b85561879ebb6
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Differential equations
Dynamical systems
Generators
Illustrations
Leaves
Magnetic fields
Mathematical analysis
Phase transitions
Representations
Symmetry
Transformations
Variables
title Renormalization, Isogenies, and Rational Symmetries of Differential Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormalization,%20Isogenies,%20and%20Rational%20Symmetries%20of%20Differential%20Equations&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Boukraa,%20S.&rft.date=2010-01-01&rft.volume=2010&rft.issue=2010&rft.spage=1&rft.epage=44&rft.pages=1-44&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2010/941560&rft_dat=%3Cproquest_doaj_%3E2285067691%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a441t-959b5de5a5cdb67a6210e755e905b18d4b411db9048561b8ce24e9cec9bdf2a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855487832&rft_id=info:pmid/&rfr_iscdi=true