Loading…

Elimination of Harmonic Force and Torque in Active Magnetic Bearing Systems with Repetitive Control and Notch Filters

Harmonic force and torque, which are caused by rotor imbalance and sensor runout, are the dominant disturbances in active magnetic bearing (AMB) systems. To eliminate the harmonic force and torque, a novel control method based on repetitive control and notch filters is proposed. Firstly, the dynamic...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2017-04, Vol.17 (4), p.763
Main Authors: Xu, Xiangbo, Chen, Shao, Liu, Jinhao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Harmonic force and torque, which are caused by rotor imbalance and sensor runout, are the dominant disturbances in active magnetic bearing (AMB) systems. To eliminate the harmonic force and torque, a novel control method based on repetitive control and notch filters is proposed. Firstly, the dynamics of a four radial degrees of freedom AMB system is described, and the AMB model can be described in terms of the translational and rotational motions, respectively. Next, a closed-loop generalized notch filter is utilized to identify the synchronous displacement resulting from the rotor imbalance, and a feed-forward compensation of the synchronous force and torque related to the AMB displacement stiffness is formulated by using the identified synchronous displacement. Then, a plug-in repetitive controller is designed to track the synchronous feed-forward compensation adaptively and to suppress the harmonic vibrations due to the sensor runout. Finally, the proposed control method is verified by simulations and experiments. The control algorithm is insensitive to the parameter variations of the power amplifiers and can precisely suppress the harmonic force and torque. Its practicality stems from its low computational load.
ISSN:1424-8220
1424-8220
DOI:10.3390/s17040763