Loading…
Technologies for recovery and reuse of plant nutrients from human excreta and domestic wastewater: a protocol for a systematic map and living evidence platform
Background Research and development on the recovery and reuse of nutrients found in human excreta and domestic wastewater has intensified over the past years, continuously producing new knowledge and technologies. However, research impact and knowledge transfer are limited. In particular, uptake and...
Saved in:
Published in: | Environmental evidence 2021-08, Vol.10 (1), p.1-10, Article 20 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c630t-9f9909e816c385aae5baffd5d1fdeb51e22c17ab57691f6fa46db72a92650bb13 |
---|---|
cites | cdi_FETCH-LOGICAL-c630t-9f9909e816c385aae5baffd5d1fdeb51e22c17ab57691f6fa46db72a92650bb13 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 1 |
container_title | Environmental evidence |
container_volume | 10 |
creator | Macura, Biljana Thomas, James Metson, Geneviève S McConville, Jennifer R Johannesdottir, Solveig L Seddon, Dan Harder, Robin |
description | Background Research and development on the recovery and reuse of nutrients found in human excreta and domestic wastewater has intensified over the past years, continuously producing new knowledge and technologies. However, research impact and knowledge transfer are limited. In particular, uptake and upscaling of new and innovative solutions in practice remain a key challenge. Achieving a more circular use of nutrients thus goes beyond technological innovation and will benefit from a synthesis of existing research being readily available to various stakeholders in the field. The aim of the systematic map and online evidence platform described in this protocol is threefold. First, to collate and summarise scientific research on technologies that facilitate the recovery and reuse of plant nutrients and organic matter found in human excreta and domestic and municipal wastewater. Second, to present this evidence in a way that can be easily navigated by stakeholders. Third, to report on new relevant research evidence to stakeholders as it becomes available. Methods Firstly, we will produce a baseline systematic map, which will consist of an extension of two previous related syntheses. In a next stage, with help of machine learning and other automation technologies, the baseline systematic map will be transformed into 'living mode' that allows for a continually updated evidence platform. The baseline systematic map searches will be performed in 4 bibliographic sources and Google Scholar. All searches will be performed in English. Coding and meta-data extraction will include bibliographic information, locations as well as the recovery and reuse pathways. The living mode will mostly rely on automation technologies in EPPI-Reviewer and the Microsoft Academic database. The new records will be automatically identified and ranked in terms of eligibility. Records above a certain 'cut-off' threshold will be manually screened for eligibility. The threshold will be devised based on the empirically informed machine learning model. The evidence from the baseline systematic map and living mode will be embedded in an online evidence platform that in an interactive manner allows stakeholders to visualise and explore the systematic map findings, including knowledge gaps and clusters. Keywords: Circular economy, Nitrogen, Nutrient recovery, Phosphorus, Resource recovery, Sewage |
doi_str_mv | 10.1186/s13750-021-00235-x |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9289143b5fe340a38afc6382f8d1abf1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A673600066</galeid><doaj_id>oai_doaj_org_article_9289143b5fe340a38afc6382f8d1abf1</doaj_id><sourcerecordid>A673600066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-9f9909e816c385aae5baffd5d1fdeb51e22c17ab57691f6fa46db72a92650bb13</originalsourceid><addsrcrecordid>eNqFk1trFDEUxwdRsNR-AZ8CgiAyNZdNZsa30nopFAStvoYzmZPdlJnJmmS2u5_Gr2pmV2z3QUwecvv9_ye3UxQvGT1nrFbvIhOVpCXlrKSUC1lunxQnnC6qkouaP33Uf16cxXhHc6llzSk9KX7dolmNvvdLh5FYH0hA4zcYdgTGLg-miMRbsu5hTGScUnA4pkwGP5DVNMBIcGsCJtjznR8wJmfIPcSE95AwvCdA1sEnb3y_DwAk7vLiADM3wHov7N3GjUuCG9fhaHCOlzI8vCieWegjnv1pT4vvHz_cXn4ub758ur68uCmNEjSVjW0a2mDNlBG1BEDZgrWd7JjtsJUMOTesglZWqmFWWViorq04NFxJ2rZMnBbXB9_Ow51eBzdA2GkPTu8nfFhqCHnDPeqG1w1biFZaFAsKogabN1FzW3cMWjt7nR-84j2up_bILfZTC2FudETNmJBUZcHbfwqu3I-LffjgtFSqmu3L_9O9mzSr6kbM7q8OfH6Fn1N-Hn3npzDm29RcVotcJGseqCXkM7rR-hTADC4afaEqofKfUerhaEdUrh0OzvgRrcvzR4I3R4LMJNymJUwx6utvX4_Z14_YFUKfVtH3U3J-jMcgP4Am-BgD2r93wKieU0IfUkLnlND7lNBb8RuMRwAi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574444519</pqid></control><display><type>article</type><title>Technologies for recovery and reuse of plant nutrients from human excreta and domestic wastewater: a protocol for a systematic map and living evidence platform</title><source>Publicly Available Content Database</source><creator>Macura, Biljana ; Thomas, James ; Metson, Geneviève S ; McConville, Jennifer R ; Johannesdottir, Solveig L ; Seddon, Dan ; Harder, Robin</creator><creatorcontrib>Macura, Biljana ; Thomas, James ; Metson, Geneviève S ; McConville, Jennifer R ; Johannesdottir, Solveig L ; Seddon, Dan ; Harder, Robin ; Sveriges lantbruksuniversitet</creatorcontrib><description>Background Research and development on the recovery and reuse of nutrients found in human excreta and domestic wastewater has intensified over the past years, continuously producing new knowledge and technologies. However, research impact and knowledge transfer are limited. In particular, uptake and upscaling of new and innovative solutions in practice remain a key challenge. Achieving a more circular use of nutrients thus goes beyond technological innovation and will benefit from a synthesis of existing research being readily available to various stakeholders in the field. The aim of the systematic map and online evidence platform described in this protocol is threefold. First, to collate and summarise scientific research on technologies that facilitate the recovery and reuse of plant nutrients and organic matter found in human excreta and domestic and municipal wastewater. Second, to present this evidence in a way that can be easily navigated by stakeholders. Third, to report on new relevant research evidence to stakeholders as it becomes available. Methods Firstly, we will produce a baseline systematic map, which will consist of an extension of two previous related syntheses. In a next stage, with help of machine learning and other automation technologies, the baseline systematic map will be transformed into 'living mode' that allows for a continually updated evidence platform. The baseline systematic map searches will be performed in 4 bibliographic sources and Google Scholar. All searches will be performed in English. Coding and meta-data extraction will include bibliographic information, locations as well as the recovery and reuse pathways. The living mode will mostly rely on automation technologies in EPPI-Reviewer and the Microsoft Academic database. The new records will be automatically identified and ranked in terms of eligibility. Records above a certain 'cut-off' threshold will be manually screened for eligibility. The threshold will be devised based on the empirically informed machine learning model. The evidence from the baseline systematic map and living mode will be embedded in an online evidence platform that in an interactive manner allows stakeholders to visualise and explore the systematic map findings, including knowledge gaps and clusters. Keywords: Circular economy, Nitrogen, Nutrient recovery, Phosphorus, Resource recovery, Sewage</description><identifier>ISSN: 2047-2382</identifier><identifier>EISSN: 2047-2382</identifier><identifier>DOI: 10.1186/s13750-021-00235-x</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Automation ; Bibliographies ; Carbon ; Circular economy ; Composition ; Domestic wastewater ; Environmental Management ; Human wastes ; Knowledge ; Knowledge management ; Learning algorithms ; Machine learning ; Mapping ; Methods ; Miljöledning ; Municipal wastewater ; Nitrogen ; Nutrient recovery ; Nutrients ; Organic matter ; Phosphorus ; Production methods ; R&D ; Recycling (Waste, etc.) ; Research & development ; Resource recovery ; Search engines ; Sewage ; Stakeholders ; Sweden ; Technological change ; Wastewater</subject><ispartof>Environmental evidence, 2021-08, Vol.10 (1), p.1-10, Article 20</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-9f9909e816c385aae5baffd5d1fdeb51e22c17ab57691f6fa46db72a92650bb13</citedby><cites>FETCH-LOGICAL-c630t-9f9909e816c385aae5baffd5d1fdeb51e22c17ab57691f6fa46db72a92650bb13</cites><orcidid>0000-0002-4253-1390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2574444519?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-178936$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-56671$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/113506$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Macura, Biljana</creatorcontrib><creatorcontrib>Thomas, James</creatorcontrib><creatorcontrib>Metson, Geneviève S</creatorcontrib><creatorcontrib>McConville, Jennifer R</creatorcontrib><creatorcontrib>Johannesdottir, Solveig L</creatorcontrib><creatorcontrib>Seddon, Dan</creatorcontrib><creatorcontrib>Harder, Robin</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Technologies for recovery and reuse of plant nutrients from human excreta and domestic wastewater: a protocol for a systematic map and living evidence platform</title><title>Environmental evidence</title><description>Background Research and development on the recovery and reuse of nutrients found in human excreta and domestic wastewater has intensified over the past years, continuously producing new knowledge and technologies. However, research impact and knowledge transfer are limited. In particular, uptake and upscaling of new and innovative solutions in practice remain a key challenge. Achieving a more circular use of nutrients thus goes beyond technological innovation and will benefit from a synthesis of existing research being readily available to various stakeholders in the field. The aim of the systematic map and online evidence platform described in this protocol is threefold. First, to collate and summarise scientific research on technologies that facilitate the recovery and reuse of plant nutrients and organic matter found in human excreta and domestic and municipal wastewater. Second, to present this evidence in a way that can be easily navigated by stakeholders. Third, to report on new relevant research evidence to stakeholders as it becomes available. Methods Firstly, we will produce a baseline systematic map, which will consist of an extension of two previous related syntheses. In a next stage, with help of machine learning and other automation technologies, the baseline systematic map will be transformed into 'living mode' that allows for a continually updated evidence platform. The baseline systematic map searches will be performed in 4 bibliographic sources and Google Scholar. All searches will be performed in English. Coding and meta-data extraction will include bibliographic information, locations as well as the recovery and reuse pathways. The living mode will mostly rely on automation technologies in EPPI-Reviewer and the Microsoft Academic database. The new records will be automatically identified and ranked in terms of eligibility. Records above a certain 'cut-off' threshold will be manually screened for eligibility. The threshold will be devised based on the empirically informed machine learning model. The evidence from the baseline systematic map and living mode will be embedded in an online evidence platform that in an interactive manner allows stakeholders to visualise and explore the systematic map findings, including knowledge gaps and clusters. Keywords: Circular economy, Nitrogen, Nutrient recovery, Phosphorus, Resource recovery, Sewage</description><subject>Automation</subject><subject>Bibliographies</subject><subject>Carbon</subject><subject>Circular economy</subject><subject>Composition</subject><subject>Domestic wastewater</subject><subject>Environmental Management</subject><subject>Human wastes</subject><subject>Knowledge</subject><subject>Knowledge management</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Methods</subject><subject>Miljöledning</subject><subject>Municipal wastewater</subject><subject>Nitrogen</subject><subject>Nutrient recovery</subject><subject>Nutrients</subject><subject>Organic matter</subject><subject>Phosphorus</subject><subject>Production methods</subject><subject>R&D</subject><subject>Recycling (Waste, etc.)</subject><subject>Research & development</subject><subject>Resource recovery</subject><subject>Search engines</subject><subject>Sewage</subject><subject>Stakeholders</subject><subject>Sweden</subject><subject>Technological change</subject><subject>Wastewater</subject><issn>2047-2382</issn><issn>2047-2382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFk1trFDEUxwdRsNR-AZ8CgiAyNZdNZsa30nopFAStvoYzmZPdlJnJmmS2u5_Gr2pmV2z3QUwecvv9_ye3UxQvGT1nrFbvIhOVpCXlrKSUC1lunxQnnC6qkouaP33Uf16cxXhHc6llzSk9KX7dolmNvvdLh5FYH0hA4zcYdgTGLg-miMRbsu5hTGScUnA4pkwGP5DVNMBIcGsCJtjznR8wJmfIPcSE95AwvCdA1sEnb3y_DwAk7vLiADM3wHov7N3GjUuCG9fhaHCOlzI8vCieWegjnv1pT4vvHz_cXn4ub758ur68uCmNEjSVjW0a2mDNlBG1BEDZgrWd7JjtsJUMOTesglZWqmFWWViorq04NFxJ2rZMnBbXB9_Ow51eBzdA2GkPTu8nfFhqCHnDPeqG1w1biFZaFAsKogabN1FzW3cMWjt7nR-84j2up_bILfZTC2FudETNmJBUZcHbfwqu3I-LffjgtFSqmu3L_9O9mzSr6kbM7q8OfH6Fn1N-Hn3npzDm29RcVotcJGseqCXkM7rR-hTADC4afaEqofKfUerhaEdUrh0OzvgRrcvzR4I3R4LMJNymJUwx6utvX4_Z14_YFUKfVtH3U3J-jMcgP4Am-BgD2r93wKieU0IfUkLnlND7lNBb8RuMRwAi</recordid><startdate>20210828</startdate><enddate>20210828</enddate><creator>Macura, Biljana</creator><creator>Thomas, James</creator><creator>Metson, Geneviève S</creator><creator>McConville, Jennifer R</creator><creator>Johannesdottir, Solveig L</creator><creator>Seddon, Dan</creator><creator>Harder, Robin</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4253-1390</orcidid></search><sort><creationdate>20210828</creationdate><title>Technologies for recovery and reuse of plant nutrients from human excreta and domestic wastewater: a protocol for a systematic map and living evidence platform</title><author>Macura, Biljana ; Thomas, James ; Metson, Geneviève S ; McConville, Jennifer R ; Johannesdottir, Solveig L ; Seddon, Dan ; Harder, Robin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-9f9909e816c385aae5baffd5d1fdeb51e22c17ab57691f6fa46db72a92650bb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automation</topic><topic>Bibliographies</topic><topic>Carbon</topic><topic>Circular economy</topic><topic>Composition</topic><topic>Domestic wastewater</topic><topic>Environmental Management</topic><topic>Human wastes</topic><topic>Knowledge</topic><topic>Knowledge management</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Methods</topic><topic>Miljöledning</topic><topic>Municipal wastewater</topic><topic>Nitrogen</topic><topic>Nutrient recovery</topic><topic>Nutrients</topic><topic>Organic matter</topic><topic>Phosphorus</topic><topic>Production methods</topic><topic>R&D</topic><topic>Recycling (Waste, etc.)</topic><topic>Research & development</topic><topic>Resource recovery</topic><topic>Search engines</topic><topic>Sewage</topic><topic>Stakeholders</topic><topic>Sweden</topic><topic>Technological change</topic><topic>Wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macura, Biljana</creatorcontrib><creatorcontrib>Thomas, James</creatorcontrib><creatorcontrib>Metson, Geneviève S</creatorcontrib><creatorcontrib>McConville, Jennifer R</creatorcontrib><creatorcontrib>Johannesdottir, Solveig L</creatorcontrib><creatorcontrib>Seddon, Dan</creatorcontrib><creatorcontrib>Harder, Robin</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><collection>Directory of Open Access Journals</collection><jtitle>Environmental evidence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macura, Biljana</au><au>Thomas, James</au><au>Metson, Geneviève S</au><au>McConville, Jennifer R</au><au>Johannesdottir, Solveig L</au><au>Seddon, Dan</au><au>Harder, Robin</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technologies for recovery and reuse of plant nutrients from human excreta and domestic wastewater: a protocol for a systematic map and living evidence platform</atitle><jtitle>Environmental evidence</jtitle><date>2021-08-28</date><risdate>2021</risdate><volume>10</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>20</artnum><issn>2047-2382</issn><eissn>2047-2382</eissn><abstract>Background Research and development on the recovery and reuse of nutrients found in human excreta and domestic wastewater has intensified over the past years, continuously producing new knowledge and technologies. However, research impact and knowledge transfer are limited. In particular, uptake and upscaling of new and innovative solutions in practice remain a key challenge. Achieving a more circular use of nutrients thus goes beyond technological innovation and will benefit from a synthesis of existing research being readily available to various stakeholders in the field. The aim of the systematic map and online evidence platform described in this protocol is threefold. First, to collate and summarise scientific research on technologies that facilitate the recovery and reuse of plant nutrients and organic matter found in human excreta and domestic and municipal wastewater. Second, to present this evidence in a way that can be easily navigated by stakeholders. Third, to report on new relevant research evidence to stakeholders as it becomes available. Methods Firstly, we will produce a baseline systematic map, which will consist of an extension of two previous related syntheses. In a next stage, with help of machine learning and other automation technologies, the baseline systematic map will be transformed into 'living mode' that allows for a continually updated evidence platform. The baseline systematic map searches will be performed in 4 bibliographic sources and Google Scholar. All searches will be performed in English. Coding and meta-data extraction will include bibliographic information, locations as well as the recovery and reuse pathways. The living mode will mostly rely on automation technologies in EPPI-Reviewer and the Microsoft Academic database. The new records will be automatically identified and ranked in terms of eligibility. Records above a certain 'cut-off' threshold will be manually screened for eligibility. The threshold will be devised based on the empirically informed machine learning model. The evidence from the baseline systematic map and living mode will be embedded in an online evidence platform that in an interactive manner allows stakeholders to visualise and explore the systematic map findings, including knowledge gaps and clusters. Keywords: Circular economy, Nitrogen, Nutrient recovery, Phosphorus, Resource recovery, Sewage</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><doi>10.1186/s13750-021-00235-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4253-1390</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-2382 |
ispartof | Environmental evidence, 2021-08, Vol.10 (1), p.1-10, Article 20 |
issn | 2047-2382 2047-2382 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9289143b5fe340a38afc6382f8d1abf1 |
source | Publicly Available Content Database |
subjects | Automation Bibliographies Carbon Circular economy Composition Domestic wastewater Environmental Management Human wastes Knowledge Knowledge management Learning algorithms Machine learning Mapping Methods Miljöledning Municipal wastewater Nitrogen Nutrient recovery Nutrients Organic matter Phosphorus Production methods R&D Recycling (Waste, etc.) Research & development Resource recovery Search engines Sewage Stakeholders Sweden Technological change Wastewater |
title | Technologies for recovery and reuse of plant nutrients from human excreta and domestic wastewater: a protocol for a systematic map and living evidence platform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technologies%20for%20recovery%20and%20reuse%20of%20plant%20nutrients%20from%20human%20excreta%20and%20domestic%20wastewater:%20a%20protocol%20for%20a%20systematic%20map%20and%20living%20evidence%20platform&rft.jtitle=Environmental%20evidence&rft.au=Macura,%20Biljana&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2021-08-28&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=20&rft.issn=2047-2382&rft.eissn=2047-2382&rft_id=info:doi/10.1186/s13750-021-00235-x&rft_dat=%3Cgale_doaj_%3EA673600066%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c630t-9f9909e816c385aae5baffd5d1fdeb51e22c17ab57691f6fa46db72a92650bb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574444519&rft_id=info:pmid/&rft_galeid=A673600066&rfr_iscdi=true |