Loading…
The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease
The main protease of SARS-CoV-2 (Mpro) is an important target for developing COVID-19 therapeutics. Recent work has highlighted Mpro’s susceptibility to undergo redox-associated conformational changes in response to cellular and immune-system-induced oxidation. Despite structural evidence indicating...
Saved in:
Published in: | Nature communications 2023-09, Vol.14 (1), p.5625-12, Article 5625 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 5625 |
container_title | Nature communications |
container_volume | 14 |
creator | Tran, Norman Dasari, Sathish Barwell, Sarah A. E. McLeod, Matthew J. Kalyaanamoorthy, Subha Holyoak, Todd Ganesan, Aravindhan |
description | The main protease of SARS-CoV-2 (Mpro) is an important target for developing COVID-19 therapeutics. Recent work has highlighted Mpro’s susceptibility to undergo redox-associated conformational changes in response to cellular and immune-system-induced oxidation. Despite structural evidence indicating large-scale rearrangements upon oxidation, the mechanisms of conformational change and its functional consequences are poorly understood. Here, we present the crystal structure of an Mpro point mutant (H163A) that shows an oxidized conformation with the catalytic cysteine in a disulfide bond. We hypothesize that Mpro adopts this conformation under oxidative stress to protect against over-oxidation. Our metadynamics simulations illustrate a potential mechanism by which H163 modulates this transition and suggest that this equilibrium exists in the wild type enzyme. We show that other point mutations also significantly shift the equilibrium towards this state by altering conformational free energies. Unique avenues of SARS-CoV-2 research can be explored by understanding how H163 modulates this equilibrium.
SARS-CoV-2 main protease adapts a disulfide bonded inactive state to escape oxidative stress. Here, the authors report a crystal structure of an inactive conformation of the enzyme achieved through a H163A mutation, and the mechanistic details of conformational changes using atomistic simulations. |
doi_str_mv | 10.1038/s41467-023-40023-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_92baafb20ff94d88a421041c014dedec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_92baafb20ff94d88a421041c014dedec</doaj_id><sourcerecordid>2864619049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEvBX4viEViuglSoh0YWrNbHH26wSe7GTCvrr625KaTnggz3yPPN6xjNF8ZqS95Tw9kMSVDSyIoxXghz2Z8UxI4JWVDL-_JF9VJymtCN5cUVbIV4WR1w2Sikmj4vN5grLM9rwVTnOE0x98OXsI1zjkErwZfjV2_4GbWmCdyGOCxFcOeW4y9W3y2odflSsHKH35T6GCSHhq-KFgyHh6f15Unz__GmzPqsuvn45X68uKlMLOlWdBcnAtLWztlFESomigZYQCaZh2IgGO0GzYZ1UktXWcFK7GsEYYawh_KQ4X3RtgJ3ex36E-FsH6PXhIsSthjj1ZkCtWAfgOkacU8K2LQhG8wcZQoVFiyZrfVy09nM3ojXopwjDE9GnHt9f6W241llGybpussK7e4UYfs6YJj32yeAwgMcwJ83aXBFVGc_o23_QXZijz391oHJSjN9RbKFMDClFdA_ZUKLvhkAvQ6Bz-_VhCLTIQW8e1_EQ8qflGeALkLLLbzH-ffs_srfLVrwR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864014239</pqid></control><display><type>article</type><title>The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease</title><source>PMC (PubMed Central)</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tran, Norman ; Dasari, Sathish ; Barwell, Sarah A. E. ; McLeod, Matthew J. ; Kalyaanamoorthy, Subha ; Holyoak, Todd ; Ganesan, Aravindhan</creator><creatorcontrib>Tran, Norman ; Dasari, Sathish ; Barwell, Sarah A. E. ; McLeod, Matthew J. ; Kalyaanamoorthy, Subha ; Holyoak, Todd ; Ganesan, Aravindhan</creatorcontrib><description>The main protease of SARS-CoV-2 (Mpro) is an important target for developing COVID-19 therapeutics. Recent work has highlighted Mpro’s susceptibility to undergo redox-associated conformational changes in response to cellular and immune-system-induced oxidation. Despite structural evidence indicating large-scale rearrangements upon oxidation, the mechanisms of conformational change and its functional consequences are poorly understood. Here, we present the crystal structure of an Mpro point mutant (H163A) that shows an oxidized conformation with the catalytic cysteine in a disulfide bond. We hypothesize that Mpro adopts this conformation under oxidative stress to protect against over-oxidation. Our metadynamics simulations illustrate a potential mechanism by which H163 modulates this transition and suggest that this equilibrium exists in the wild type enzyme. We show that other point mutations also significantly shift the equilibrium towards this state by altering conformational free energies. Unique avenues of SARS-CoV-2 research can be explored by understanding how H163 modulates this equilibrium.
SARS-CoV-2 main protease adapts a disulfide bonded inactive state to escape oxidative stress. Here, the authors report a crystal structure of an inactive conformation of the enzyme achieved through a H163A mutation, and the mechanistic details of conformational changes using atomistic simulations.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-40023-4</identifier><identifier>PMID: 37699927</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 631/326/596/4130 ; 631/45/607/468 ; 631/535/1266 ; 631/57/2266 ; 82/83 ; Cellular structure ; Conformation ; Coronavirus 3C Proteases ; COVID-19 ; COVID-19 - genetics ; Crystal structure ; Enzymes ; Equilibrium ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Mutation ; Oxidation ; Oxidative stress ; Protease ; Proteinase ; SARS-CoV-2 - genetics ; Scale (corrosion) ; Science ; Science (multidisciplinary) ; Severe acute respiratory syndrome coronavirus 2</subject><ispartof>Nature communications, 2023-09, Vol.14 (1), p.5625-12, Article 5625</ispartof><rights>The Author(s) 2023</rights><rights>2023. Springer Nature Limited.</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03</citedby><cites>FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03</cites><orcidid>0000-0001-5540-916X ; 0000-0002-7329-1115 ; 0000-0001-8689-943X ; 0000-0002-5554-9047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2864014239/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2864014239?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37699927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, Norman</creatorcontrib><creatorcontrib>Dasari, Sathish</creatorcontrib><creatorcontrib>Barwell, Sarah A. E.</creatorcontrib><creatorcontrib>McLeod, Matthew J.</creatorcontrib><creatorcontrib>Kalyaanamoorthy, Subha</creatorcontrib><creatorcontrib>Holyoak, Todd</creatorcontrib><creatorcontrib>Ganesan, Aravindhan</creatorcontrib><title>The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The main protease of SARS-CoV-2 (Mpro) is an important target for developing COVID-19 therapeutics. Recent work has highlighted Mpro’s susceptibility to undergo redox-associated conformational changes in response to cellular and immune-system-induced oxidation. Despite structural evidence indicating large-scale rearrangements upon oxidation, the mechanisms of conformational change and its functional consequences are poorly understood. Here, we present the crystal structure of an Mpro point mutant (H163A) that shows an oxidized conformation with the catalytic cysteine in a disulfide bond. We hypothesize that Mpro adopts this conformation under oxidative stress to protect against over-oxidation. Our metadynamics simulations illustrate a potential mechanism by which H163 modulates this transition and suggest that this equilibrium exists in the wild type enzyme. We show that other point mutations also significantly shift the equilibrium towards this state by altering conformational free energies. Unique avenues of SARS-CoV-2 research can be explored by understanding how H163 modulates this equilibrium.
SARS-CoV-2 main protease adapts a disulfide bonded inactive state to escape oxidative stress. Here, the authors report a crystal structure of an inactive conformation of the enzyme achieved through a H163A mutation, and the mechanistic details of conformational changes using atomistic simulations.</description><subject>119/118</subject><subject>631/326/596/4130</subject><subject>631/45/607/468</subject><subject>631/535/1266</subject><subject>631/57/2266</subject><subject>82/83</subject><subject>Cellular structure</subject><subject>Conformation</subject><subject>Coronavirus 3C Proteases</subject><subject>COVID-19</subject><subject>COVID-19 - genetics</subject><subject>Crystal structure</subject><subject>Enzymes</subject><subject>Equilibrium</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Protease</subject><subject>Proteinase</subject><subject>SARS-CoV-2 - genetics</subject><subject>Scale (corrosion)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEvBX4viEViuglSoh0YWrNbHH26wSe7GTCvrr625KaTnggz3yPPN6xjNF8ZqS95Tw9kMSVDSyIoxXghz2Z8UxI4JWVDL-_JF9VJymtCN5cUVbIV4WR1w2Sikmj4vN5grLM9rwVTnOE0x98OXsI1zjkErwZfjV2_4GbWmCdyGOCxFcOeW4y9W3y2odflSsHKH35T6GCSHhq-KFgyHh6f15Unz__GmzPqsuvn45X68uKlMLOlWdBcnAtLWztlFESomigZYQCaZh2IgGO0GzYZ1UktXWcFK7GsEYYawh_KQ4X3RtgJ3ex36E-FsH6PXhIsSthjj1ZkCtWAfgOkacU8K2LQhG8wcZQoVFiyZrfVy09nM3ojXopwjDE9GnHt9f6W241llGybpussK7e4UYfs6YJj32yeAwgMcwJ83aXBFVGc_o23_QXZijz391oHJSjN9RbKFMDClFdA_ZUKLvhkAvQ6Bz-_VhCLTIQW8e1_EQ8qflGeALkLLLbzH-ffs_srfLVrwR</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Tran, Norman</creator><creator>Dasari, Sathish</creator><creator>Barwell, Sarah A. E.</creator><creator>McLeod, Matthew J.</creator><creator>Kalyaanamoorthy, Subha</creator><creator>Holyoak, Todd</creator><creator>Ganesan, Aravindhan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5540-916X</orcidid><orcidid>https://orcid.org/0000-0002-7329-1115</orcidid><orcidid>https://orcid.org/0000-0001-8689-943X</orcidid><orcidid>https://orcid.org/0000-0002-5554-9047</orcidid></search><sort><creationdate>20230912</creationdate><title>The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease</title><author>Tran, Norman ; Dasari, Sathish ; Barwell, Sarah A. E. ; McLeod, Matthew J. ; Kalyaanamoorthy, Subha ; Holyoak, Todd ; Ganesan, Aravindhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>119/118</topic><topic>631/326/596/4130</topic><topic>631/45/607/468</topic><topic>631/535/1266</topic><topic>631/57/2266</topic><topic>82/83</topic><topic>Cellular structure</topic><topic>Conformation</topic><topic>Coronavirus 3C Proteases</topic><topic>COVID-19</topic><topic>COVID-19 - genetics</topic><topic>Crystal structure</topic><topic>Enzymes</topic><topic>Equilibrium</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Protease</topic><topic>Proteinase</topic><topic>SARS-CoV-2 - genetics</topic><topic>Scale (corrosion)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Norman</creatorcontrib><creatorcontrib>Dasari, Sathish</creatorcontrib><creatorcontrib>Barwell, Sarah A. E.</creatorcontrib><creatorcontrib>McLeod, Matthew J.</creatorcontrib><creatorcontrib>Kalyaanamoorthy, Subha</creatorcontrib><creatorcontrib>Holyoak, Todd</creatorcontrib><creatorcontrib>Ganesan, Aravindhan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Norman</au><au>Dasari, Sathish</au><au>Barwell, Sarah A. E.</au><au>McLeod, Matthew J.</au><au>Kalyaanamoorthy, Subha</au><au>Holyoak, Todd</au><au>Ganesan, Aravindhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-09-12</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>5625</spage><epage>12</epage><pages>5625-12</pages><artnum>5625</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The main protease of SARS-CoV-2 (Mpro) is an important target for developing COVID-19 therapeutics. Recent work has highlighted Mpro’s susceptibility to undergo redox-associated conformational changes in response to cellular and immune-system-induced oxidation. Despite structural evidence indicating large-scale rearrangements upon oxidation, the mechanisms of conformational change and its functional consequences are poorly understood. Here, we present the crystal structure of an Mpro point mutant (H163A) that shows an oxidized conformation with the catalytic cysteine in a disulfide bond. We hypothesize that Mpro adopts this conformation under oxidative stress to protect against over-oxidation. Our metadynamics simulations illustrate a potential mechanism by which H163 modulates this transition and suggest that this equilibrium exists in the wild type enzyme. We show that other point mutations also significantly shift the equilibrium towards this state by altering conformational free energies. Unique avenues of SARS-CoV-2 research can be explored by understanding how H163 modulates this equilibrium.
SARS-CoV-2 main protease adapts a disulfide bonded inactive state to escape oxidative stress. Here, the authors report a crystal structure of an inactive conformation of the enzyme achieved through a H163A mutation, and the mechanistic details of conformational changes using atomistic simulations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37699927</pmid><doi>10.1038/s41467-023-40023-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5540-916X</orcidid><orcidid>https://orcid.org/0000-0002-7329-1115</orcidid><orcidid>https://orcid.org/0000-0001-8689-943X</orcidid><orcidid>https://orcid.org/0000-0002-5554-9047</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-09, Vol.14 (1), p.5625-12, Article 5625 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_92baafb20ff94d88a421041c014dedec |
source | PMC (PubMed Central); Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 119/118 631/326/596/4130 631/45/607/468 631/535/1266 631/57/2266 82/83 Cellular structure Conformation Coronavirus 3C Proteases COVID-19 COVID-19 - genetics Crystal structure Enzymes Equilibrium Humanities and Social Sciences Humans multidisciplinary Mutation Oxidation Oxidative stress Protease Proteinase SARS-CoV-2 - genetics Scale (corrosion) Science Science (multidisciplinary) Severe acute respiratory syndrome coronavirus 2 |
title | The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20H163A%20mutation%20unravels%20an%20oxidized%20conformation%20of%20the%20SARS-CoV-2%20main%20protease&rft.jtitle=Nature%20communications&rft.au=Tran,%20Norman&rft.date=2023-09-12&rft.volume=14&rft.issue=1&rft.spage=5625&rft.epage=12&rft.pages=5625-12&rft.artnum=5625&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-40023-4&rft_dat=%3Cproquest_doaj_%3E2864619049%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864014239&rft_id=info:pmid/37699927&rfr_iscdi=true |