Loading…

The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease

The main protease of SARS-CoV-2 (Mpro) is an important target for developing COVID-19 therapeutics. Recent work has highlighted Mpro’s susceptibility to undergo redox-associated conformational changes in response to cellular and immune-system-induced oxidation. Despite structural evidence indicating...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-09, Vol.14 (1), p.5625-12, Article 5625
Main Authors: Tran, Norman, Dasari, Sathish, Barwell, Sarah A. E., McLeod, Matthew J., Kalyaanamoorthy, Subha, Holyoak, Todd, Ganesan, Aravindhan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03
cites cdi_FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03
container_end_page 12
container_issue 1
container_start_page 5625
container_title Nature communications
container_volume 14
creator Tran, Norman
Dasari, Sathish
Barwell, Sarah A. E.
McLeod, Matthew J.
Kalyaanamoorthy, Subha
Holyoak, Todd
Ganesan, Aravindhan
description The main protease of SARS-CoV-2 (Mpro) is an important target for developing COVID-19 therapeutics. Recent work has highlighted Mpro’s susceptibility to undergo redox-associated conformational changes in response to cellular and immune-system-induced oxidation. Despite structural evidence indicating large-scale rearrangements upon oxidation, the mechanisms of conformational change and its functional consequences are poorly understood. Here, we present the crystal structure of an Mpro point mutant (H163A) that shows an oxidized conformation with the catalytic cysteine in a disulfide bond. We hypothesize that Mpro adopts this conformation under oxidative stress to protect against over-oxidation. Our metadynamics simulations illustrate a potential mechanism by which H163 modulates this transition and suggest that this equilibrium exists in the wild type enzyme. We show that other point mutations also significantly shift the equilibrium towards this state by altering conformational free energies. Unique avenues of SARS-CoV-2 research can be explored by understanding how H163 modulates this equilibrium. SARS-CoV-2 main protease adapts a disulfide bonded inactive state to escape oxidative stress. Here, the authors report a crystal structure of an inactive conformation of the enzyme achieved through a H163A mutation, and the mechanistic details of conformational changes using atomistic simulations.
doi_str_mv 10.1038/s41467-023-40023-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_92baafb20ff94d88a421041c014dedec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_92baafb20ff94d88a421041c014dedec</doaj_id><sourcerecordid>2864619049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEvBX4viEViuglSoh0YWrNbHH26wSe7GTCvrr625KaTnggz3yPPN6xjNF8ZqS95Tw9kMSVDSyIoxXghz2Z8UxI4JWVDL-_JF9VJymtCN5cUVbIV4WR1w2Sikmj4vN5grLM9rwVTnOE0x98OXsI1zjkErwZfjV2_4GbWmCdyGOCxFcOeW4y9W3y2odflSsHKH35T6GCSHhq-KFgyHh6f15Unz__GmzPqsuvn45X68uKlMLOlWdBcnAtLWztlFESomigZYQCaZh2IgGO0GzYZ1UktXWcFK7GsEYYawh_KQ4X3RtgJ3ex36E-FsH6PXhIsSthjj1ZkCtWAfgOkacU8K2LQhG8wcZQoVFiyZrfVy09nM3ojXopwjDE9GnHt9f6W241llGybpussK7e4UYfs6YJj32yeAwgMcwJ83aXBFVGc_o23_QXZijz391oHJSjN9RbKFMDClFdA_ZUKLvhkAvQ6Bz-_VhCLTIQW8e1_EQ8qflGeALkLLLbzH-ffs_srfLVrwR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864014239</pqid></control><display><type>article</type><title>The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease</title><source>PMC (PubMed Central)</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tran, Norman ; Dasari, Sathish ; Barwell, Sarah A. E. ; McLeod, Matthew J. ; Kalyaanamoorthy, Subha ; Holyoak, Todd ; Ganesan, Aravindhan</creator><creatorcontrib>Tran, Norman ; Dasari, Sathish ; Barwell, Sarah A. E. ; McLeod, Matthew J. ; Kalyaanamoorthy, Subha ; Holyoak, Todd ; Ganesan, Aravindhan</creatorcontrib><description>The main protease of SARS-CoV-2 (Mpro) is an important target for developing COVID-19 therapeutics. Recent work has highlighted Mpro’s susceptibility to undergo redox-associated conformational changes in response to cellular and immune-system-induced oxidation. Despite structural evidence indicating large-scale rearrangements upon oxidation, the mechanisms of conformational change and its functional consequences are poorly understood. Here, we present the crystal structure of an Mpro point mutant (H163A) that shows an oxidized conformation with the catalytic cysteine in a disulfide bond. We hypothesize that Mpro adopts this conformation under oxidative stress to protect against over-oxidation. Our metadynamics simulations illustrate a potential mechanism by which H163 modulates this transition and suggest that this equilibrium exists in the wild type enzyme. We show that other point mutations also significantly shift the equilibrium towards this state by altering conformational free energies. Unique avenues of SARS-CoV-2 research can be explored by understanding how H163 modulates this equilibrium. SARS-CoV-2 main protease adapts a disulfide bonded inactive state to escape oxidative stress. Here, the authors report a crystal structure of an inactive conformation of the enzyme achieved through a H163A mutation, and the mechanistic details of conformational changes using atomistic simulations.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-40023-4</identifier><identifier>PMID: 37699927</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 631/326/596/4130 ; 631/45/607/468 ; 631/535/1266 ; 631/57/2266 ; 82/83 ; Cellular structure ; Conformation ; Coronavirus 3C Proteases ; COVID-19 ; COVID-19 - genetics ; Crystal structure ; Enzymes ; Equilibrium ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Mutation ; Oxidation ; Oxidative stress ; Protease ; Proteinase ; SARS-CoV-2 - genetics ; Scale (corrosion) ; Science ; Science (multidisciplinary) ; Severe acute respiratory syndrome coronavirus 2</subject><ispartof>Nature communications, 2023-09, Vol.14 (1), p.5625-12, Article 5625</ispartof><rights>The Author(s) 2023</rights><rights>2023. Springer Nature Limited.</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03</citedby><cites>FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03</cites><orcidid>0000-0001-5540-916X ; 0000-0002-7329-1115 ; 0000-0001-8689-943X ; 0000-0002-5554-9047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2864014239/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2864014239?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37699927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, Norman</creatorcontrib><creatorcontrib>Dasari, Sathish</creatorcontrib><creatorcontrib>Barwell, Sarah A. E.</creatorcontrib><creatorcontrib>McLeod, Matthew J.</creatorcontrib><creatorcontrib>Kalyaanamoorthy, Subha</creatorcontrib><creatorcontrib>Holyoak, Todd</creatorcontrib><creatorcontrib>Ganesan, Aravindhan</creatorcontrib><title>The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The main protease of SARS-CoV-2 (Mpro) is an important target for developing COVID-19 therapeutics. Recent work has highlighted Mpro’s susceptibility to undergo redox-associated conformational changes in response to cellular and immune-system-induced oxidation. Despite structural evidence indicating large-scale rearrangements upon oxidation, the mechanisms of conformational change and its functional consequences are poorly understood. Here, we present the crystal structure of an Mpro point mutant (H163A) that shows an oxidized conformation with the catalytic cysteine in a disulfide bond. We hypothesize that Mpro adopts this conformation under oxidative stress to protect against over-oxidation. Our metadynamics simulations illustrate a potential mechanism by which H163 modulates this transition and suggest that this equilibrium exists in the wild type enzyme. We show that other point mutations also significantly shift the equilibrium towards this state by altering conformational free energies. Unique avenues of SARS-CoV-2 research can be explored by understanding how H163 modulates this equilibrium. SARS-CoV-2 main protease adapts a disulfide bonded inactive state to escape oxidative stress. Here, the authors report a crystal structure of an inactive conformation of the enzyme achieved through a H163A mutation, and the mechanistic details of conformational changes using atomistic simulations.</description><subject>119/118</subject><subject>631/326/596/4130</subject><subject>631/45/607/468</subject><subject>631/535/1266</subject><subject>631/57/2266</subject><subject>82/83</subject><subject>Cellular structure</subject><subject>Conformation</subject><subject>Coronavirus 3C Proteases</subject><subject>COVID-19</subject><subject>COVID-19 - genetics</subject><subject>Crystal structure</subject><subject>Enzymes</subject><subject>Equilibrium</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Protease</subject><subject>Proteinase</subject><subject>SARS-CoV-2 - genetics</subject><subject>Scale (corrosion)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEvBX4viEViuglSoh0YWrNbHH26wSe7GTCvrr625KaTnggz3yPPN6xjNF8ZqS95Tw9kMSVDSyIoxXghz2Z8UxI4JWVDL-_JF9VJymtCN5cUVbIV4WR1w2Sikmj4vN5grLM9rwVTnOE0x98OXsI1zjkErwZfjV2_4GbWmCdyGOCxFcOeW4y9W3y2odflSsHKH35T6GCSHhq-KFgyHh6f15Unz__GmzPqsuvn45X68uKlMLOlWdBcnAtLWztlFESomigZYQCaZh2IgGO0GzYZ1UktXWcFK7GsEYYawh_KQ4X3RtgJ3ex36E-FsH6PXhIsSthjj1ZkCtWAfgOkacU8K2LQhG8wcZQoVFiyZrfVy09nM3ojXopwjDE9GnHt9f6W241llGybpussK7e4UYfs6YJj32yeAwgMcwJ83aXBFVGc_o23_QXZijz391oHJSjN9RbKFMDClFdA_ZUKLvhkAvQ6Bz-_VhCLTIQW8e1_EQ8qflGeALkLLLbzH-ffs_srfLVrwR</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Tran, Norman</creator><creator>Dasari, Sathish</creator><creator>Barwell, Sarah A. E.</creator><creator>McLeod, Matthew J.</creator><creator>Kalyaanamoorthy, Subha</creator><creator>Holyoak, Todd</creator><creator>Ganesan, Aravindhan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5540-916X</orcidid><orcidid>https://orcid.org/0000-0002-7329-1115</orcidid><orcidid>https://orcid.org/0000-0001-8689-943X</orcidid><orcidid>https://orcid.org/0000-0002-5554-9047</orcidid></search><sort><creationdate>20230912</creationdate><title>The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease</title><author>Tran, Norman ; Dasari, Sathish ; Barwell, Sarah A. E. ; McLeod, Matthew J. ; Kalyaanamoorthy, Subha ; Holyoak, Todd ; Ganesan, Aravindhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>119/118</topic><topic>631/326/596/4130</topic><topic>631/45/607/468</topic><topic>631/535/1266</topic><topic>631/57/2266</topic><topic>82/83</topic><topic>Cellular structure</topic><topic>Conformation</topic><topic>Coronavirus 3C Proteases</topic><topic>COVID-19</topic><topic>COVID-19 - genetics</topic><topic>Crystal structure</topic><topic>Enzymes</topic><topic>Equilibrium</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Protease</topic><topic>Proteinase</topic><topic>SARS-CoV-2 - genetics</topic><topic>Scale (corrosion)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Norman</creatorcontrib><creatorcontrib>Dasari, Sathish</creatorcontrib><creatorcontrib>Barwell, Sarah A. E.</creatorcontrib><creatorcontrib>McLeod, Matthew J.</creatorcontrib><creatorcontrib>Kalyaanamoorthy, Subha</creatorcontrib><creatorcontrib>Holyoak, Todd</creatorcontrib><creatorcontrib>Ganesan, Aravindhan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Norman</au><au>Dasari, Sathish</au><au>Barwell, Sarah A. E.</au><au>McLeod, Matthew J.</au><au>Kalyaanamoorthy, Subha</au><au>Holyoak, Todd</au><au>Ganesan, Aravindhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-09-12</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>5625</spage><epage>12</epage><pages>5625-12</pages><artnum>5625</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The main protease of SARS-CoV-2 (Mpro) is an important target for developing COVID-19 therapeutics. Recent work has highlighted Mpro’s susceptibility to undergo redox-associated conformational changes in response to cellular and immune-system-induced oxidation. Despite structural evidence indicating large-scale rearrangements upon oxidation, the mechanisms of conformational change and its functional consequences are poorly understood. Here, we present the crystal structure of an Mpro point mutant (H163A) that shows an oxidized conformation with the catalytic cysteine in a disulfide bond. We hypothesize that Mpro adopts this conformation under oxidative stress to protect against over-oxidation. Our metadynamics simulations illustrate a potential mechanism by which H163 modulates this transition and suggest that this equilibrium exists in the wild type enzyme. We show that other point mutations also significantly shift the equilibrium towards this state by altering conformational free energies. Unique avenues of SARS-CoV-2 research can be explored by understanding how H163 modulates this equilibrium. SARS-CoV-2 main protease adapts a disulfide bonded inactive state to escape oxidative stress. Here, the authors report a crystal structure of an inactive conformation of the enzyme achieved through a H163A mutation, and the mechanistic details of conformational changes using atomistic simulations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37699927</pmid><doi>10.1038/s41467-023-40023-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5540-916X</orcidid><orcidid>https://orcid.org/0000-0002-7329-1115</orcidid><orcidid>https://orcid.org/0000-0001-8689-943X</orcidid><orcidid>https://orcid.org/0000-0002-5554-9047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-09, Vol.14 (1), p.5625-12, Article 5625
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_92baafb20ff94d88a421041c014dedec
source PMC (PubMed Central); Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
631/326/596/4130
631/45/607/468
631/535/1266
631/57/2266
82/83
Cellular structure
Conformation
Coronavirus 3C Proteases
COVID-19
COVID-19 - genetics
Crystal structure
Enzymes
Equilibrium
Humanities and Social Sciences
Humans
multidisciplinary
Mutation
Oxidation
Oxidative stress
Protease
Proteinase
SARS-CoV-2 - genetics
Scale (corrosion)
Science
Science (multidisciplinary)
Severe acute respiratory syndrome coronavirus 2
title The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20H163A%20mutation%20unravels%20an%20oxidized%20conformation%20of%20the%20SARS-CoV-2%20main%20protease&rft.jtitle=Nature%20communications&rft.au=Tran,%20Norman&rft.date=2023-09-12&rft.volume=14&rft.issue=1&rft.spage=5625&rft.epage=12&rft.pages=5625-12&rft.artnum=5625&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-40023-4&rft_dat=%3Cproquest_doaj_%3E2864619049%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-bda72ac85fdd690777e46a8007ac62e646eb412e6df79725dc305f5eacc4cdc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864014239&rft_id=info:pmid/37699927&rfr_iscdi=true