Loading…

Preclinical assessment of the efficacy and specificity of GD2-B7H3 SynNotch CAR-T in metastatic neuroblastoma

The ability to utilize preclinical models to predict the clinical toxicity of chimeric antigen receptor (CAR) T cells in solid tumors is tenuous, thereby necessitating the development and evaluation of gated systems. Here we found that murine GD2 CAR-T cells, specific for the tumor-associated antige...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-01, Vol.12 (1), p.511-15, Article 511
Main Authors: Moghimi, Babak, Muthugounder, Sakunthala, Jambon, Samy, Tibbetts, Rachelle, Hung, Long, Bassiri, Hamid, Hogarty, Michael D., Barrett, David M., Shimada, Hiroyuki, Asgharzadeh, Shahab
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability to utilize preclinical models to predict the clinical toxicity of chimeric antigen receptor (CAR) T cells in solid tumors is tenuous, thereby necessitating the development and evaluation of gated systems. Here we found that murine GD2 CAR-T cells, specific for the tumor-associated antigen GD2, induce fatal neurotoxicity in a costimulatory domain-dependent manner. Meanwhile, human B7H3 CAR-T cells exhibit efficacy in preclinical models of neuroblastoma. Seeking a better CAR, we generated a SynNotch gated CAR-T, GD2-B7H3, recognizing GD2 as the gate and B7H3 as the target. GD2-B7H3 CAR-T cells control the growth of neuroblastoma in vitro and in metastatic xenograft mouse models, with high specificity and efficacy. These improvements come partly from the better metabolic fitness of GD2-B7H3 CAR-T cells, as evidenced by their naïve T-like post-cytotoxicity oxidative metabolism and lower exhaustion profile. Antibodies targeting a tumor antigen, GD2, show some efficacy for neuroblastoma but induce severe neuropathic pain and peripheral neuropathy. Here the authors design a gated chimeric antigen receptor (CAR), using GD2 as the gate and another tumor antigen, B7H3, as the target, to find this GD2-B7H3 CAR capable of suppressing neuroblastoma in mouse models with little adverse effects.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20785-x