Loading…
Organic Farm Bedded Pack System Microbiomes: A Case Study with Comparisons to Similar and Different Bedded Packs
Animal housing and bedding materials influence cow and farm worker exposure to microbial pathogens, biocontrol agents, and/or allergens. This case study represents an effort to characterize the bacterial and fungal community of bedding systems using an amplicon sequencing approach supplemented with...
Saved in:
Published in: | Dairy (Basel) 2022-09, Vol.3 (3), p.587-607 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Animal housing and bedding materials influence cow and farm worker exposure to microbial pathogens, biocontrol agents, and/or allergens. This case study represents an effort to characterize the bacterial and fungal community of bedding systems using an amplicon sequencing approach supplemented with the ecological assessment of cultured Trichocomaceae isolates (focusing on Penicillium and Aspergillus species) and yeasts (Saccharomycetales). Bedding from five certified organic dairy farms in northern Vermont USA were sampled monthly between October 2015 and May 2016. Additional herd level samples from bulk tank milk and two bedding types were collected from two farms to collect fungal isolates for culturing and ecology. Most of the microorganisms in cattle bedding were microbial decomposers (saprophytes) or coprophiles, on account of the bedding being composed of dead plant matter, cattle feces, and urine. Composition of bacterial and fungal communities exhibited distinct patterns of ecological succession measured through time and by bedding depth. Community composition patterns were related to management practices and choice of bedding material. Aspergillus and Penicillium species exhibited niche differentiation expressed as differential substrate requirements; however, they generally exhibited traits of early colonizers of bedding substrates, typically rich in carbon and low in nitrogen. Pichia kudriavzevii was the most prevalent species cultured from milk and bedding. P. kudriavzevii produced protease and its abundance directly related to temperature. The choice of bedding and its management represent a potential opportunity to curate the microbial community of the housing environment. |
---|---|
ISSN: | 2624-862X 2624-862X |
DOI: | 10.3390/dairy3030042 |