Loading…

Assessment of the Impacts of Climate Change on Climatic Zones over the Korean Peninsula

In assessing the impact of climate change, the use of a multimodel ensemble (MME) is required to quantify uncertainties between scenarios and produce downscaled outlines for the simulation of climate under the influence of different factors including topography. This study of climate change scenario...

Full description

Saved in:
Bibliographic Details
Published in:Advances in meteorology 2019, Vol.2019 (2019), p.1-11
Main Authors: Jeung, Se Jin, Kim, Byung Sik, Sung, Jang Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In assessing the impact of climate change, the use of a multimodel ensemble (MME) is required to quantify uncertainties between scenarios and produce downscaled outlines for the simulation of climate under the influence of different factors including topography. This study of climate change scenarios from 13 global climate models (GCMs) assesses the impacts of future climate change. Unlike South Korea, North Korea lacks studies using climate change scenarios of the Coupled Model Intercomparison Project Phase 5 (CMIP5) and only recently did the country start the projection of extreme precipitation episodes. As such, one of the main purposes of this study is to predict changes in the average climatic conditions of North Korea in the future. The result of comparing downscaled climate change scenarios with observation data for a reference period indicates the high applicability of the MME. Furthermore, this study classifies climatic zones by applying the Köppen–Geiger climatic zones classification to the MME, which is validated for future precipitation and temperature. The result suggests that the continental climate that covers the inland area for the reference climate is expected to shift into the temperate climate. Moreover, the coefficient of variation (CV) in the temperature ensemble is particularly low for the southern coast of the Korean Peninsula, and, accordingly, a high possibility of the shifting climatic zone of the coast is predicted.
ISSN:1687-9309
1687-9317
DOI:10.1155/2019/5418041