Loading…

Zein-Derived Peptides from Corn Promote the Proliferation of C2C12 Myoblasts via Crosstalk of mTORC1 and mTORC2 Signaling Pathways

Dietary protein supplementation has emerged as a promising strategy in combating sarcopenia. Furthermore, searching for alternatives of animal proteins has been a hot topic. The present study aimed to investigate the effects of zein peptides on C2C12 myoblasts and explore their potential molecular m...

Full description

Saved in:
Bibliographic Details
Published in:Foods 2024-03, Vol.13 (6), p.919
Main Authors: Amin, Mohammad Sadiq, Yu, Binbin, Wu, Dongjing, Lu, Yujia, Wu, Wei, Wang, Jing, Zhang, Yuhao, Fu, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dietary protein supplementation has emerged as a promising strategy in combating sarcopenia. Furthermore, searching for alternatives of animal proteins has been a hot topic. The present study aimed to investigate the effects of zein peptides on C2C12 myoblasts and explore their potential molecular mechanisms. The proliferative, cell cycle, and anti-apoptotic activities of zein peptides were evaluated. Peptidomics analysis and transcriptome sequencing were employed to explore the structure-activity relationship and underlying molecular mechanisms. The results indicated that zein peptides (0.05–0.2 mg/mL) exerted a significant proliferation-promoting impact on C2C12 cells, via increasing cell viability by 33.37 to 42.39%. Furthermore, zein peptides significantly increased S phase proportion and decreased the apoptosis rate from 34.08% (model group) to 28.96% in C2C12 cells. In addition, zein peptides exhibited a pronounced anti-apoptotic effect on C2C12 cells. Zein peptides are abundant in branch-chain amino acids, especially leucine. Transcriptomics analysis revealed that zein peptides can promote proliferation, accelerate cell cycle, and improve protein synthesis of muscle cells through mTORC1 and mTORC2 signaling pathways.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods13060919