Loading…

Microbial sulfur transformations in sediments from Subglacial Lake Whillans

Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sul...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in microbiology 2014-11, Vol.5, p.594-594
Main Authors: Purcell, Alicia M, Mikucki, Jill A, Achberger, Amanda M, Alekhina, Irina A, Barbante, Carlo, Christner, Brent C, Ghosh, Dhritiman, Michaud, Alexander B, Mitchell, Andrew C, Priscu, John C, Scherer, Reed, Skidmore, Mark L, Vick-Majors, Trista J, The Wissard Science Team
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-d633902a4fa26db1025ed7b06289ad17c1a9621c96103fb298185d9a30d59bf03
cites cdi_FETCH-LOGICAL-c462t-d633902a4fa26db1025ed7b06289ad17c1a9621c96103fb298185d9a30d59bf03
container_end_page 594
container_issue
container_start_page 594
container_title Frontiers in microbiology
container_volume 5
creator Purcell, Alicia M
Mikucki, Jill A
Achberger, Amanda M
Alekhina, Irina A
Barbante, Carlo
Christner, Brent C
Ghosh, Dhritiman
Michaud, Alexander B
Mitchell, Andrew C
Priscu, John C
Scherer, Reed
Skidmore, Mark L
Vick-Majors, Trista J
The Wissard Science Team
description Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW), Antarctica, by examining key genes involved in dissimilatory sulfur oxidation and reduction. The presence of sulfur transformation genes throughout the top 34 cm of SLW sediments changes with depth. SLW surficial sediments were dominated by genes related to known sulfur-oxidizing chemoautotrophs. Sequences encoding the adenosine-5'-phosphosulfate (APS) reductase gene, involved in both dissimilatory sulfate reduction and sulfur oxidation, were present in all samples and clustered into 16 distinct operational taxonomic units. The majority of APS reductase sequences (74%) clustered with known sulfur oxidizers including those within the "Sideroxydans" and Thiobacillus genera. Reverse-acting dissimilatory sulfite reductase (rDSR) and 16S rRNA gene sequences further support dominance of "Sideroxydans" and Thiobacillus phylotypes in the top 2 cm of SLW sediments. The SLW microbial community has the genetic potential for sulfate reduction which is supported by experimentally measured low rates (1.4 pmol cm(-3)d(-1)) of biologically mediated sulfate reduction and the presence of APS reductase and DSR gene sequences related to Desulfobacteraceae and Desulfotomaculum. Our results also infer the presence of sulfur oxidation, which can be a significant energetic pathway for chemosynthetic biosynthesis in SLW sediments. The water in SLW ultimately flows into the Ross Sea where intermediates from subglacial sulfur transformations can influence the flux of solutes to the Southern Ocean.
doi_str_mv 10.3389/fmicb.2014.00594
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_92ed8ef98e1f434fb545eccc5d33df15</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_92ed8ef98e1f434fb545eccc5d33df15</doaj_id><sourcerecordid>1637563808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-d633902a4fa26db1025ed7b06289ad17c1a9621c96103fb298185d9a30d59bf03</originalsourceid><addsrcrecordid>eNpVkU1PGzEQhq0KVCLg3lO1Ry4J_l77UqmKoKAGcYCqvVn-DKa762DvVuq_r5NQFHywR555H3vmBeATggtChLwMfbRmgSGiCwiZpB_ADHFO5wTiX0cH8Qk4L-UZ1kUhrvtHcIIZbVvB2Qx8v4s2JxN115SpC1NuxqyHElLu9RjTUJo4NMW72PthLE3IqW8eJrPutN1qVvq3b34-xa6rojNwHHRX_PnreQp-XF89Lm_mq_tvt8uvq7mlHI9zxwmREGsaNObOIIiZd62BHAupHWot0pJjZCVHkASDpUCCOakJdEyaAMkpuN1zXdLPapNjr_NflXRUu4uU10rnMdrOK4m9Ez5I4VGghAbDKPPWWuYIcQGxyvqyZ20m03tna5dZd--g7zNDfFLr9EdRTFqE2wq4eAXk9DL5Mqo-Fuu3A_FpKgpx0jJOBBS1FO5L68RLyT68PYOg2lqqdpaqraVqZ2mVfD783pvgv4HkHzIHnsw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1637563808</pqid></control><display><type>article</type><title>Microbial sulfur transformations in sediments from Subglacial Lake Whillans</title><source>PubMed Central</source><creator>Purcell, Alicia M ; Mikucki, Jill A ; Achberger, Amanda M ; Alekhina, Irina A ; Barbante, Carlo ; Christner, Brent C ; Ghosh, Dhritiman ; Michaud, Alexander B ; Mitchell, Andrew C ; Priscu, John C ; Scherer, Reed ; Skidmore, Mark L ; Vick-Majors, Trista J ; The Wissard Science Team</creator><creatorcontrib>Purcell, Alicia M ; Mikucki, Jill A ; Achberger, Amanda M ; Alekhina, Irina A ; Barbante, Carlo ; Christner, Brent C ; Ghosh, Dhritiman ; Michaud, Alexander B ; Mitchell, Andrew C ; Priscu, John C ; Scherer, Reed ; Skidmore, Mark L ; Vick-Majors, Trista J ; The Wissard Science Team ; The WISSARD Science Team</creatorcontrib><description>Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW), Antarctica, by examining key genes involved in dissimilatory sulfur oxidation and reduction. The presence of sulfur transformation genes throughout the top 34 cm of SLW sediments changes with depth. SLW surficial sediments were dominated by genes related to known sulfur-oxidizing chemoautotrophs. Sequences encoding the adenosine-5'-phosphosulfate (APS) reductase gene, involved in both dissimilatory sulfate reduction and sulfur oxidation, were present in all samples and clustered into 16 distinct operational taxonomic units. The majority of APS reductase sequences (74%) clustered with known sulfur oxidizers including those within the "Sideroxydans" and Thiobacillus genera. Reverse-acting dissimilatory sulfite reductase (rDSR) and 16S rRNA gene sequences further support dominance of "Sideroxydans" and Thiobacillus phylotypes in the top 2 cm of SLW sediments. The SLW microbial community has the genetic potential for sulfate reduction which is supported by experimentally measured low rates (1.4 pmol cm(-3)d(-1)) of biologically mediated sulfate reduction and the presence of APS reductase and DSR gene sequences related to Desulfobacteraceae and Desulfotomaculum. Our results also infer the presence of sulfur oxidation, which can be a significant energetic pathway for chemosynthetic biosynthesis in SLW sediments. The water in SLW ultimately flows into the Ross Sea where intermediates from subglacial sulfur transformations can influence the flux of solutes to the Southern Ocean.</description><identifier>ISSN: 1664-302X</identifier><identifier>EISSN: 1664-302X</identifier><identifier>DOI: 10.3389/fmicb.2014.00594</identifier><identifier>PMID: 25477865</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Antarctic subglacial aquatic environments ; chemosynthesis ; Geomicrobiology ; Microbiology ; sulfate reduction ; Sulfur oxidation</subject><ispartof>Frontiers in microbiology, 2014-11, Vol.5, p.594-594</ispartof><rights>Copyright © 2014 Purcell, Mikucki, Achberger, Alekhina, Barbante, Christner, Ghosh, Michaud, Mitchell, Priscu, Scherer, Skidmore, Vick-Majors and WISSARD Science Team. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-d633902a4fa26db1025ed7b06289ad17c1a9621c96103fb298185d9a30d59bf03</citedby><cites>FETCH-LOGICAL-c462t-d633902a4fa26db1025ed7b06289ad17c1a9621c96103fb298185d9a30d59bf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237127/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237127/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25477865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Purcell, Alicia M</creatorcontrib><creatorcontrib>Mikucki, Jill A</creatorcontrib><creatorcontrib>Achberger, Amanda M</creatorcontrib><creatorcontrib>Alekhina, Irina A</creatorcontrib><creatorcontrib>Barbante, Carlo</creatorcontrib><creatorcontrib>Christner, Brent C</creatorcontrib><creatorcontrib>Ghosh, Dhritiman</creatorcontrib><creatorcontrib>Michaud, Alexander B</creatorcontrib><creatorcontrib>Mitchell, Andrew C</creatorcontrib><creatorcontrib>Priscu, John C</creatorcontrib><creatorcontrib>Scherer, Reed</creatorcontrib><creatorcontrib>Skidmore, Mark L</creatorcontrib><creatorcontrib>Vick-Majors, Trista J</creatorcontrib><creatorcontrib>The Wissard Science Team</creatorcontrib><creatorcontrib>The WISSARD Science Team</creatorcontrib><title>Microbial sulfur transformations in sediments from Subglacial Lake Whillans</title><title>Frontiers in microbiology</title><addtitle>Front Microbiol</addtitle><description>Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW), Antarctica, by examining key genes involved in dissimilatory sulfur oxidation and reduction. The presence of sulfur transformation genes throughout the top 34 cm of SLW sediments changes with depth. SLW surficial sediments were dominated by genes related to known sulfur-oxidizing chemoautotrophs. Sequences encoding the adenosine-5'-phosphosulfate (APS) reductase gene, involved in both dissimilatory sulfate reduction and sulfur oxidation, were present in all samples and clustered into 16 distinct operational taxonomic units. The majority of APS reductase sequences (74%) clustered with known sulfur oxidizers including those within the "Sideroxydans" and Thiobacillus genera. Reverse-acting dissimilatory sulfite reductase (rDSR) and 16S rRNA gene sequences further support dominance of "Sideroxydans" and Thiobacillus phylotypes in the top 2 cm of SLW sediments. The SLW microbial community has the genetic potential for sulfate reduction which is supported by experimentally measured low rates (1.4 pmol cm(-3)d(-1)) of biologically mediated sulfate reduction and the presence of APS reductase and DSR gene sequences related to Desulfobacteraceae and Desulfotomaculum. Our results also infer the presence of sulfur oxidation, which can be a significant energetic pathway for chemosynthetic biosynthesis in SLW sediments. The water in SLW ultimately flows into the Ross Sea where intermediates from subglacial sulfur transformations can influence the flux of solutes to the Southern Ocean.</description><subject>Antarctic subglacial aquatic environments</subject><subject>chemosynthesis</subject><subject>Geomicrobiology</subject><subject>Microbiology</subject><subject>sulfate reduction</subject><subject>Sulfur oxidation</subject><issn>1664-302X</issn><issn>1664-302X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1PGzEQhq0KVCLg3lO1Ry4J_l77UqmKoKAGcYCqvVn-DKa762DvVuq_r5NQFHywR555H3vmBeATggtChLwMfbRmgSGiCwiZpB_ADHFO5wTiX0cH8Qk4L-UZ1kUhrvtHcIIZbVvB2Qx8v4s2JxN115SpC1NuxqyHElLu9RjTUJo4NMW72PthLE3IqW8eJrPutN1qVvq3b34-xa6rojNwHHRX_PnreQp-XF89Lm_mq_tvt8uvq7mlHI9zxwmREGsaNObOIIiZd62BHAupHWot0pJjZCVHkASDpUCCOakJdEyaAMkpuN1zXdLPapNjr_NflXRUu4uU10rnMdrOK4m9Ez5I4VGghAbDKPPWWuYIcQGxyvqyZ20m03tna5dZd--g7zNDfFLr9EdRTFqE2wq4eAXk9DL5Mqo-Fuu3A_FpKgpx0jJOBBS1FO5L68RLyT68PYOg2lqqdpaqraVqZ2mVfD783pvgv4HkHzIHnsw</recordid><startdate>20141119</startdate><enddate>20141119</enddate><creator>Purcell, Alicia M</creator><creator>Mikucki, Jill A</creator><creator>Achberger, Amanda M</creator><creator>Alekhina, Irina A</creator><creator>Barbante, Carlo</creator><creator>Christner, Brent C</creator><creator>Ghosh, Dhritiman</creator><creator>Michaud, Alexander B</creator><creator>Mitchell, Andrew C</creator><creator>Priscu, John C</creator><creator>Scherer, Reed</creator><creator>Skidmore, Mark L</creator><creator>Vick-Majors, Trista J</creator><creator>The Wissard Science Team</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141119</creationdate><title>Microbial sulfur transformations in sediments from Subglacial Lake Whillans</title><author>Purcell, Alicia M ; Mikucki, Jill A ; Achberger, Amanda M ; Alekhina, Irina A ; Barbante, Carlo ; Christner, Brent C ; Ghosh, Dhritiman ; Michaud, Alexander B ; Mitchell, Andrew C ; Priscu, John C ; Scherer, Reed ; Skidmore, Mark L ; Vick-Majors, Trista J ; The Wissard Science Team</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-d633902a4fa26db1025ed7b06289ad17c1a9621c96103fb298185d9a30d59bf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antarctic subglacial aquatic environments</topic><topic>chemosynthesis</topic><topic>Geomicrobiology</topic><topic>Microbiology</topic><topic>sulfate reduction</topic><topic>Sulfur oxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purcell, Alicia M</creatorcontrib><creatorcontrib>Mikucki, Jill A</creatorcontrib><creatorcontrib>Achberger, Amanda M</creatorcontrib><creatorcontrib>Alekhina, Irina A</creatorcontrib><creatorcontrib>Barbante, Carlo</creatorcontrib><creatorcontrib>Christner, Brent C</creatorcontrib><creatorcontrib>Ghosh, Dhritiman</creatorcontrib><creatorcontrib>Michaud, Alexander B</creatorcontrib><creatorcontrib>Mitchell, Andrew C</creatorcontrib><creatorcontrib>Priscu, John C</creatorcontrib><creatorcontrib>Scherer, Reed</creatorcontrib><creatorcontrib>Skidmore, Mark L</creatorcontrib><creatorcontrib>Vick-Majors, Trista J</creatorcontrib><creatorcontrib>The Wissard Science Team</creatorcontrib><creatorcontrib>The WISSARD Science Team</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Purcell, Alicia M</au><au>Mikucki, Jill A</au><au>Achberger, Amanda M</au><au>Alekhina, Irina A</au><au>Barbante, Carlo</au><au>Christner, Brent C</au><au>Ghosh, Dhritiman</au><au>Michaud, Alexander B</au><au>Mitchell, Andrew C</au><au>Priscu, John C</au><au>Scherer, Reed</au><au>Skidmore, Mark L</au><au>Vick-Majors, Trista J</au><au>The Wissard Science Team</au><aucorp>The WISSARD Science Team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial sulfur transformations in sediments from Subglacial Lake Whillans</atitle><jtitle>Frontiers in microbiology</jtitle><addtitle>Front Microbiol</addtitle><date>2014-11-19</date><risdate>2014</risdate><volume>5</volume><spage>594</spage><epage>594</epage><pages>594-594</pages><issn>1664-302X</issn><eissn>1664-302X</eissn><abstract>Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW), Antarctica, by examining key genes involved in dissimilatory sulfur oxidation and reduction. The presence of sulfur transformation genes throughout the top 34 cm of SLW sediments changes with depth. SLW surficial sediments were dominated by genes related to known sulfur-oxidizing chemoautotrophs. Sequences encoding the adenosine-5'-phosphosulfate (APS) reductase gene, involved in both dissimilatory sulfate reduction and sulfur oxidation, were present in all samples and clustered into 16 distinct operational taxonomic units. The majority of APS reductase sequences (74%) clustered with known sulfur oxidizers including those within the "Sideroxydans" and Thiobacillus genera. Reverse-acting dissimilatory sulfite reductase (rDSR) and 16S rRNA gene sequences further support dominance of "Sideroxydans" and Thiobacillus phylotypes in the top 2 cm of SLW sediments. The SLW microbial community has the genetic potential for sulfate reduction which is supported by experimentally measured low rates (1.4 pmol cm(-3)d(-1)) of biologically mediated sulfate reduction and the presence of APS reductase and DSR gene sequences related to Desulfobacteraceae and Desulfotomaculum. Our results also infer the presence of sulfur oxidation, which can be a significant energetic pathway for chemosynthetic biosynthesis in SLW sediments. The water in SLW ultimately flows into the Ross Sea where intermediates from subglacial sulfur transformations can influence the flux of solutes to the Southern Ocean.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>25477865</pmid><doi>10.3389/fmicb.2014.00594</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-302X
ispartof Frontiers in microbiology, 2014-11, Vol.5, p.594-594
issn 1664-302X
1664-302X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_92ed8ef98e1f434fb545eccc5d33df15
source PubMed Central
subjects Antarctic subglacial aquatic environments
chemosynthesis
Geomicrobiology
Microbiology
sulfate reduction
Sulfur oxidation
title Microbial sulfur transformations in sediments from Subglacial Lake Whillans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20sulfur%20transformations%20in%20sediments%20from%20Subglacial%20Lake%20Whillans&rft.jtitle=Frontiers%20in%20microbiology&rft.au=Purcell,%20Alicia%20M&rft.aucorp=The%20WISSARD%20Science%20Team&rft.date=2014-11-19&rft.volume=5&rft.spage=594&rft.epage=594&rft.pages=594-594&rft.issn=1664-302X&rft.eissn=1664-302X&rft_id=info:doi/10.3389/fmicb.2014.00594&rft_dat=%3Cproquest_doaj_%3E1637563808%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-d633902a4fa26db1025ed7b06289ad17c1a9621c96103fb298185d9a30d59bf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1637563808&rft_id=info:pmid/25477865&rfr_iscdi=true