Loading…
A new two-decade (2001–2019) high-resolution agricultural primary productivity dataset for India
The present study describes a new dataset that estimates seasonally integrated agricultural gross primary productivity (GPP). Several models are being used to estimate GPP using remote sensing (RS) for regional and global studies. Using biophysical and climatic variables (MODIS, SBSS, ECWMF reanalys...
Saved in:
Published in: | Scientific data 2022-11, Vol.9 (1), p.730-12, Article 730 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study describes a new dataset that estimates seasonally integrated agricultural gross primary productivity (GPP). Several models are being used to estimate GPP using remote sensing (RS) for regional and global studies. Using biophysical and climatic variables (MODIS, SBSS, ECWMF reanalysis etc.) and validated by crop statistics, the present study provides a new dataset of agricultural GPP for monsoon and winter seasons in India for two decades (2001–2019). This dataset (GPPCY-IN) is based on the light use efficiency (LUE) principle and applied a dynamic LUE for each year and season to capture the seasonal variations more efficiently. An additional dataset (NGPPCY-IN) is also derived from crop production statistics and RS GPP to translate district-level statistics at the pixel level. Along with validation with crop statistics, the derived dataset was also compared with
in situ
GPP estimations. This dataset will be useful for many applications and has been created for estimating integrated yield loss by taking GPP as a proxy compared to resource and time-consuming field-based methods for crop insurance.
Measurement(s)
gross primary productivity
Technology Type(s)
remote sensing
Factor Type(s)
vegetation, radiation, water
Sample Characteristic - Organism
vegetation
Sample Characteristic - Location
India |
---|---|
ISSN: | 2052-4463 2052-4463 |
DOI: | 10.1038/s41597-022-01828-y |