Loading…

The Non-Fibrillating N-Terminal of α-Synuclein Binds and Co-Fibrillates with Heparin

The intrinsically disordered protein α-synuclein (aSN) is, in its fibrillated state, the main component of Lewy bodies-hallmarks of Parkinson's disease. Additional Lewy body components include glycosaminoglycans, including heparan sulfate proteoglycans. In humans, heparan sulfate has, in an age...

Full description

Saved in:
Bibliographic Details
Published in:Biomolecules (Basel, Switzerland) Switzerland), 2020-08, Vol.10 (8), p.1192
Main Authors: Skaanning, Line K, Santoro, Angelo, Skamris, Thomas, Martinsen, Jacob Hertz, D'Ursi, Anna Maria, Bucciarelli, Saskia, Vestergaard, Bente, Bugge, Katrine, Langkilde, Annette Eva, Kragelund, Birthe B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-169726640aae47c1050f9e0a13b1a9cddcbc1ee4dde9f360b50966c2295533bd3
cites cdi_FETCH-LOGICAL-c478t-169726640aae47c1050f9e0a13b1a9cddcbc1ee4dde9f360b50966c2295533bd3
container_end_page
container_issue 8
container_start_page 1192
container_title Biomolecules (Basel, Switzerland)
container_volume 10
creator Skaanning, Line K
Santoro, Angelo
Skamris, Thomas
Martinsen, Jacob Hertz
D'Ursi, Anna Maria
Bucciarelli, Saskia
Vestergaard, Bente
Bugge, Katrine
Langkilde, Annette Eva
Kragelund, Birthe B
description The intrinsically disordered protein α-synuclein (aSN) is, in its fibrillated state, the main component of Lewy bodies-hallmarks of Parkinson's disease. Additional Lewy body components include glycosaminoglycans, including heparan sulfate proteoglycans. In humans, heparan sulfate has, in an age-dependent manner, shown increased levels of sulfation. Heparin, a highly sulfated glycosaminoglycan, is a relevant mimic for mature heparan sulfate and has been shown to influence aSN fibrillation. Here, we decompose the underlying properties of the interaction between heparin and aSN and the effect of heparin on fibrillation. Via the isolation of the first 61 residues of aSN, which lacked intrinsic fibrillation propensity, fibrillation could be induced by heparin, and access to the initial steps in fibrillation was possible. Here, structural changes with shifts from disorder via type I β-turns to β-sheets were revealed, correlating with an increase in the aSN /heparin molar ratio. Fluorescence microscopy revealed that heparin and aSN co-exist in the final fibrils. We conclude that heparin can induce the fibrillation of aSN , through binding to the N-terminal with an affinity that is higher in the truncated form of aSN. It does so by specifically modulating the structure of aSN via the formation of type I β-turn structures likely critical for triggering aSN fibrillation.
doi_str_mv 10.3390/biom10081192
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_92facbcc1ebc42919c683d2bbed16a12</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_92facbcc1ebc42919c683d2bbed16a12</doaj_id><sourcerecordid>2436394340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-169726640aae47c1050f9e0a13b1a9cddcbc1ee4dde9f360b50966c2295533bd3</originalsourceid><addsrcrecordid>eNpdkU1rFDEYxwdRbKm9eZaAFw-O5m0yk4tgF2sLpR7cgreQl2d2s8wkazKj9GP1i_QzmXZr3RoCCckvP548_6p6TfAHxiT-aHwcCcYdIZI-qw4pJV1NW_bj-d7-oDrOeYPL6Mqk7GV1wGhHOWvFYXW1XAO6jKE-9Sb5YdCTDyt0WS8hjT7oAcUe3d7U36_DbAfwAZ344DLSwaFF_PcIMvrtpzU6g61OPryqXvR6yHD8sB5VV6dflouz-uLb1_PF54va8rabaiJkS4XgWGvgrSW4wb0ErAkzREvrnDWWAHDnQPZMYNNgKYSlVDYNY8axo-p853VRb9Q2-VGnaxW1V_cHMa2UTpMvlStJe110xWcsp5JIKzrmqDHgiNCEFtennWs7mxGchTAlPTyRPr0Jfq1W8ZdquShCXATvHgQp_pwhT2r02UJpT4A4Z1U6LpjkjN-hb_9DN3FOpd33VNO1JZuuUO93lE0x5wT9YzEEq7v41X78BX-z_4FH-G_Y7A_kcKvJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435873768</pqid></control><display><type>article</type><title>The Non-Fibrillating N-Terminal of α-Synuclein Binds and Co-Fibrillates with Heparin</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Skaanning, Line K ; Santoro, Angelo ; Skamris, Thomas ; Martinsen, Jacob Hertz ; D'Ursi, Anna Maria ; Bucciarelli, Saskia ; Vestergaard, Bente ; Bugge, Katrine ; Langkilde, Annette Eva ; Kragelund, Birthe B</creator><creatorcontrib>Skaanning, Line K ; Santoro, Angelo ; Skamris, Thomas ; Martinsen, Jacob Hertz ; D'Ursi, Anna Maria ; Bucciarelli, Saskia ; Vestergaard, Bente ; Bugge, Katrine ; Langkilde, Annette Eva ; Kragelund, Birthe B</creatorcontrib><description>The intrinsically disordered protein α-synuclein (aSN) is, in its fibrillated state, the main component of Lewy bodies-hallmarks of Parkinson's disease. Additional Lewy body components include glycosaminoglycans, including heparan sulfate proteoglycans. In humans, heparan sulfate has, in an age-dependent manner, shown increased levels of sulfation. Heparin, a highly sulfated glycosaminoglycan, is a relevant mimic for mature heparan sulfate and has been shown to influence aSN fibrillation. Here, we decompose the underlying properties of the interaction between heparin and aSN and the effect of heparin on fibrillation. Via the isolation of the first 61 residues of aSN, which lacked intrinsic fibrillation propensity, fibrillation could be induced by heparin, and access to the initial steps in fibrillation was possible. Here, structural changes with shifts from disorder via type I β-turns to β-sheets were revealed, correlating with an increase in the aSN /heparin molar ratio. Fluorescence microscopy revealed that heparin and aSN co-exist in the final fibrils. We conclude that heparin can induce the fibrillation of aSN , through binding to the N-terminal with an affinity that is higher in the truncated form of aSN. It does so by specifically modulating the structure of aSN via the formation of type I β-turn structures likely critical for triggering aSN fibrillation.</description><identifier>ISSN: 2218-273X</identifier><identifier>EISSN: 2218-273X</identifier><identifier>DOI: 10.3390/biom10081192</identifier><identifier>PMID: 32824376</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Age ; Aggregates ; alpha-Synuclein - chemistry ; alpha-Synuclein - metabolism ; Anticoagulants ; binding ; Binding Sites ; Circular Dichroism ; Dialysate ; Fibrillation ; Fibrils ; Fluorescence microscopy ; Glycerol ; Glycosaminoglycans ; Heparan sulfate ; Heparan sulfate proteoglycans ; Heparin ; Heparin - metabolism ; Humans ; IDP ; Lewy bodies ; Microscopy, Fluorescence ; Models, Molecular ; Movement disorders ; Neurodegenerative diseases ; NMR ; Nuclear magnetic resonance ; Parkinson's disease ; Physiology ; Protein Binding ; Protein Domains ; Protein Structure, Secondary ; Proteins ; Proteoglycans ; Spectrum analysis ; Sulfates ; Synuclein ; α-synuclein</subject><ispartof>Biomolecules (Basel, Switzerland), 2020-08, Vol.10 (8), p.1192</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-169726640aae47c1050f9e0a13b1a9cddcbc1ee4dde9f360b50966c2295533bd3</citedby><cites>FETCH-LOGICAL-c478t-169726640aae47c1050f9e0a13b1a9cddcbc1ee4dde9f360b50966c2295533bd3</cites><orcidid>0000-0001-9874-1138 ; 0000-0002-7454-1761 ; 0000-0003-2467-4205 ; 0000-0001-7612-223X ; 0000-0002-7679-6143 ; 0000-0002-6286-6243 ; 0000-0002-9690-907X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2435873768/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2435873768?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32824376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Skaanning, Line K</creatorcontrib><creatorcontrib>Santoro, Angelo</creatorcontrib><creatorcontrib>Skamris, Thomas</creatorcontrib><creatorcontrib>Martinsen, Jacob Hertz</creatorcontrib><creatorcontrib>D'Ursi, Anna Maria</creatorcontrib><creatorcontrib>Bucciarelli, Saskia</creatorcontrib><creatorcontrib>Vestergaard, Bente</creatorcontrib><creatorcontrib>Bugge, Katrine</creatorcontrib><creatorcontrib>Langkilde, Annette Eva</creatorcontrib><creatorcontrib>Kragelund, Birthe B</creatorcontrib><title>The Non-Fibrillating N-Terminal of α-Synuclein Binds and Co-Fibrillates with Heparin</title><title>Biomolecules (Basel, Switzerland)</title><addtitle>Biomolecules</addtitle><description>The intrinsically disordered protein α-synuclein (aSN) is, in its fibrillated state, the main component of Lewy bodies-hallmarks of Parkinson's disease. Additional Lewy body components include glycosaminoglycans, including heparan sulfate proteoglycans. In humans, heparan sulfate has, in an age-dependent manner, shown increased levels of sulfation. Heparin, a highly sulfated glycosaminoglycan, is a relevant mimic for mature heparan sulfate and has been shown to influence aSN fibrillation. Here, we decompose the underlying properties of the interaction between heparin and aSN and the effect of heparin on fibrillation. Via the isolation of the first 61 residues of aSN, which lacked intrinsic fibrillation propensity, fibrillation could be induced by heparin, and access to the initial steps in fibrillation was possible. Here, structural changes with shifts from disorder via type I β-turns to β-sheets were revealed, correlating with an increase in the aSN /heparin molar ratio. Fluorescence microscopy revealed that heparin and aSN co-exist in the final fibrils. We conclude that heparin can induce the fibrillation of aSN , through binding to the N-terminal with an affinity that is higher in the truncated form of aSN. It does so by specifically modulating the structure of aSN via the formation of type I β-turn structures likely critical for triggering aSN fibrillation.</description><subject>Age</subject><subject>Aggregates</subject><subject>alpha-Synuclein - chemistry</subject><subject>alpha-Synuclein - metabolism</subject><subject>Anticoagulants</subject><subject>binding</subject><subject>Binding Sites</subject><subject>Circular Dichroism</subject><subject>Dialysate</subject><subject>Fibrillation</subject><subject>Fibrils</subject><subject>Fluorescence microscopy</subject><subject>Glycerol</subject><subject>Glycosaminoglycans</subject><subject>Heparan sulfate</subject><subject>Heparan sulfate proteoglycans</subject><subject>Heparin</subject><subject>Heparin - metabolism</subject><subject>Humans</subject><subject>IDP</subject><subject>Lewy bodies</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Molecular</subject><subject>Movement disorders</subject><subject>Neurodegenerative diseases</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Parkinson's disease</subject><subject>Physiology</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Proteoglycans</subject><subject>Spectrum analysis</subject><subject>Sulfates</subject><subject>Synuclein</subject><subject>α-synuclein</subject><issn>2218-273X</issn><issn>2218-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1rFDEYxwdRbKm9eZaAFw-O5m0yk4tgF2sLpR7cgreQl2d2s8wkazKj9GP1i_QzmXZr3RoCCckvP548_6p6TfAHxiT-aHwcCcYdIZI-qw4pJV1NW_bj-d7-oDrOeYPL6Mqk7GV1wGhHOWvFYXW1XAO6jKE-9Sb5YdCTDyt0WS8hjT7oAcUe3d7U36_DbAfwAZ344DLSwaFF_PcIMvrtpzU6g61OPryqXvR6yHD8sB5VV6dflouz-uLb1_PF54va8rabaiJkS4XgWGvgrSW4wb0ErAkzREvrnDWWAHDnQPZMYNNgKYSlVDYNY8axo-p853VRb9Q2-VGnaxW1V_cHMa2UTpMvlStJe110xWcsp5JIKzrmqDHgiNCEFtennWs7mxGchTAlPTyRPr0Jfq1W8ZdquShCXATvHgQp_pwhT2r02UJpT4A4Z1U6LpjkjN-hb_9DN3FOpd33VNO1JZuuUO93lE0x5wT9YzEEq7v41X78BX-z_4FH-G_Y7A_kcKvJ</recordid><startdate>20200816</startdate><enddate>20200816</enddate><creator>Skaanning, Line K</creator><creator>Santoro, Angelo</creator><creator>Skamris, Thomas</creator><creator>Martinsen, Jacob Hertz</creator><creator>D'Ursi, Anna Maria</creator><creator>Bucciarelli, Saskia</creator><creator>Vestergaard, Bente</creator><creator>Bugge, Katrine</creator><creator>Langkilde, Annette Eva</creator><creator>Kragelund, Birthe B</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9874-1138</orcidid><orcidid>https://orcid.org/0000-0002-7454-1761</orcidid><orcidid>https://orcid.org/0000-0003-2467-4205</orcidid><orcidid>https://orcid.org/0000-0001-7612-223X</orcidid><orcidid>https://orcid.org/0000-0002-7679-6143</orcidid><orcidid>https://orcid.org/0000-0002-6286-6243</orcidid><orcidid>https://orcid.org/0000-0002-9690-907X</orcidid></search><sort><creationdate>20200816</creationdate><title>The Non-Fibrillating N-Terminal of α-Synuclein Binds and Co-Fibrillates with Heparin</title><author>Skaanning, Line K ; Santoro, Angelo ; Skamris, Thomas ; Martinsen, Jacob Hertz ; D'Ursi, Anna Maria ; Bucciarelli, Saskia ; Vestergaard, Bente ; Bugge, Katrine ; Langkilde, Annette Eva ; Kragelund, Birthe B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-169726640aae47c1050f9e0a13b1a9cddcbc1ee4dde9f360b50966c2295533bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Aggregates</topic><topic>alpha-Synuclein - chemistry</topic><topic>alpha-Synuclein - metabolism</topic><topic>Anticoagulants</topic><topic>binding</topic><topic>Binding Sites</topic><topic>Circular Dichroism</topic><topic>Dialysate</topic><topic>Fibrillation</topic><topic>Fibrils</topic><topic>Fluorescence microscopy</topic><topic>Glycerol</topic><topic>Glycosaminoglycans</topic><topic>Heparan sulfate</topic><topic>Heparan sulfate proteoglycans</topic><topic>Heparin</topic><topic>Heparin - metabolism</topic><topic>Humans</topic><topic>IDP</topic><topic>Lewy bodies</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Molecular</topic><topic>Movement disorders</topic><topic>Neurodegenerative diseases</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Parkinson's disease</topic><topic>Physiology</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Proteoglycans</topic><topic>Spectrum analysis</topic><topic>Sulfates</topic><topic>Synuclein</topic><topic>α-synuclein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skaanning, Line K</creatorcontrib><creatorcontrib>Santoro, Angelo</creatorcontrib><creatorcontrib>Skamris, Thomas</creatorcontrib><creatorcontrib>Martinsen, Jacob Hertz</creatorcontrib><creatorcontrib>D'Ursi, Anna Maria</creatorcontrib><creatorcontrib>Bucciarelli, Saskia</creatorcontrib><creatorcontrib>Vestergaard, Bente</creatorcontrib><creatorcontrib>Bugge, Katrine</creatorcontrib><creatorcontrib>Langkilde, Annette Eva</creatorcontrib><creatorcontrib>Kragelund, Birthe B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Biomolecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skaanning, Line K</au><au>Santoro, Angelo</au><au>Skamris, Thomas</au><au>Martinsen, Jacob Hertz</au><au>D'Ursi, Anna Maria</au><au>Bucciarelli, Saskia</au><au>Vestergaard, Bente</au><au>Bugge, Katrine</au><au>Langkilde, Annette Eva</au><au>Kragelund, Birthe B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Non-Fibrillating N-Terminal of α-Synuclein Binds and Co-Fibrillates with Heparin</atitle><jtitle>Biomolecules (Basel, Switzerland)</jtitle><addtitle>Biomolecules</addtitle><date>2020-08-16</date><risdate>2020</risdate><volume>10</volume><issue>8</issue><spage>1192</spage><pages>1192-</pages><issn>2218-273X</issn><eissn>2218-273X</eissn><abstract>The intrinsically disordered protein α-synuclein (aSN) is, in its fibrillated state, the main component of Lewy bodies-hallmarks of Parkinson's disease. Additional Lewy body components include glycosaminoglycans, including heparan sulfate proteoglycans. In humans, heparan sulfate has, in an age-dependent manner, shown increased levels of sulfation. Heparin, a highly sulfated glycosaminoglycan, is a relevant mimic for mature heparan sulfate and has been shown to influence aSN fibrillation. Here, we decompose the underlying properties of the interaction between heparin and aSN and the effect of heparin on fibrillation. Via the isolation of the first 61 residues of aSN, which lacked intrinsic fibrillation propensity, fibrillation could be induced by heparin, and access to the initial steps in fibrillation was possible. Here, structural changes with shifts from disorder via type I β-turns to β-sheets were revealed, correlating with an increase in the aSN /heparin molar ratio. Fluorescence microscopy revealed that heparin and aSN co-exist in the final fibrils. We conclude that heparin can induce the fibrillation of aSN , through binding to the N-terminal with an affinity that is higher in the truncated form of aSN. It does so by specifically modulating the structure of aSN via the formation of type I β-turn structures likely critical for triggering aSN fibrillation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32824376</pmid><doi>10.3390/biom10081192</doi><orcidid>https://orcid.org/0000-0001-9874-1138</orcidid><orcidid>https://orcid.org/0000-0002-7454-1761</orcidid><orcidid>https://orcid.org/0000-0003-2467-4205</orcidid><orcidid>https://orcid.org/0000-0001-7612-223X</orcidid><orcidid>https://orcid.org/0000-0002-7679-6143</orcidid><orcidid>https://orcid.org/0000-0002-6286-6243</orcidid><orcidid>https://orcid.org/0000-0002-9690-907X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2218-273X
ispartof Biomolecules (Basel, Switzerland), 2020-08, Vol.10 (8), p.1192
issn 2218-273X
2218-273X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_92facbcc1ebc42919c683d2bbed16a12
source Publicly Available Content Database; PubMed Central
subjects Age
Aggregates
alpha-Synuclein - chemistry
alpha-Synuclein - metabolism
Anticoagulants
binding
Binding Sites
Circular Dichroism
Dialysate
Fibrillation
Fibrils
Fluorescence microscopy
Glycerol
Glycosaminoglycans
Heparan sulfate
Heparan sulfate proteoglycans
Heparin
Heparin - metabolism
Humans
IDP
Lewy bodies
Microscopy, Fluorescence
Models, Molecular
Movement disorders
Neurodegenerative diseases
NMR
Nuclear magnetic resonance
Parkinson's disease
Physiology
Protein Binding
Protein Domains
Protein Structure, Secondary
Proteins
Proteoglycans
Spectrum analysis
Sulfates
Synuclein
α-synuclein
title The Non-Fibrillating N-Terminal of α-Synuclein Binds and Co-Fibrillates with Heparin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Non-Fibrillating%20N-Terminal%20of%20%CE%B1-Synuclein%20Binds%20and%20Co-Fibrillates%20with%20Heparin&rft.jtitle=Biomolecules%20(Basel,%20Switzerland)&rft.au=Skaanning,%20Line%20K&rft.date=2020-08-16&rft.volume=10&rft.issue=8&rft.spage=1192&rft.pages=1192-&rft.issn=2218-273X&rft.eissn=2218-273X&rft_id=info:doi/10.3390/biom10081192&rft_dat=%3Cproquest_doaj_%3E2436394340%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-169726640aae47c1050f9e0a13b1a9cddcbc1ee4dde9f360b50966c2295533bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435873768&rft_id=info:pmid/32824376&rfr_iscdi=true