Loading…

Rate of Approximation for Modified Lupaş-Jain-Beta Operators

The main intent of this paper is to innovate a new construction of modified Lupaş-Jain operators with weights of some Beta basis functions whose construction depends on σ such that σ0=0 and infx∈0,∞σ′x≥1. Primarily, for the sequence of operators, the convergence is discussed for functions belong to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of function spaces 2020, Vol.2020 (2020), p.1-7
Main Authors: Raina, Princess, Abbas, Zaheer, Khan, Asif, Qasim, M., Cai, Qing-Bo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103
cites cdi_FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103
container_end_page 7
container_issue 2020
container_start_page 1
container_title Journal of function spaces
container_volume 2020
creator Raina, Princess
Abbas, Zaheer
Khan, Asif
Qasim, M.
Cai, Qing-Bo
description The main intent of this paper is to innovate a new construction of modified Lupaş-Jain operators with weights of some Beta basis functions whose construction depends on σ such that σ0=0 and infx∈0,∞σ′x≥1. Primarily, for the sequence of operators, the convergence is discussed for functions belong to weighted spaces. Further, to prove pointwise convergence Voronovskaya type theorem is taken into consideration. Finally, quantitative estimates for the local approximation are discussed.
doi_str_mv 10.1155/2020/5090282
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_930f6537d59d498b8e1f4ade158955c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_930f6537d59d498b8e1f4ade158955c1</doaj_id><sourcerecordid>2548294148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103</originalsourceid><addsrcrecordid>eNqFkMFuFDEMhkcIJKq2t57RSD2WoXYm3okPPZQKaNGiSqicI-8kabNqN0NmVpSn4Wl4L7JMVY74Ysv69Pv3X1VHCO8QiU4VKDglYFBGvaj2VIu6MaVePs-8eF0djuMaABAZNdFedfZVJl-nUJ8PQ06P8UGmmDZ1SLn-klwM0bt6uR3k96_ms8RN895PUl8PPsuU8nhQvQpyP_rDp75fffv44ebisllef7q6OF82vVaLqek46IBsWMipladu0fKKVwQOAoD3O2tEWrMWBFSqMMgsneulI0Bo96urWdclWdshF5v5p00S7d9FyrdW8hT7e2-5hbCgtnPETrNZGY9Bi_NIhol6LFrHs1b59_vWj5Ndp23eFPtWkTaKNWpTqLcz1ec0jtmH56sIdpe33eVtn_Iu-MmM38WNkx_xf_SbmfaF8UH-0WhId9z-ARTJhhk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548294148</pqid></control><display><type>article</type><title>Rate of Approximation for Modified Lupaş-Jain-Beta Operators</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Raina, Princess ; Abbas, Zaheer ; Khan, Asif ; Qasim, M. ; Cai, Qing-Bo</creator><contributor>Hazarika, Bipan</contributor><creatorcontrib>Raina, Princess ; Abbas, Zaheer ; Khan, Asif ; Qasim, M. ; Cai, Qing-Bo ; Hazarika, Bipan</creatorcontrib><description>The main intent of this paper is to innovate a new construction of modified Lupaş-Jain operators with weights of some Beta basis functions whose construction depends on σ such that σ0=0 and infx∈0,∞σ′x≥1. Primarily, for the sequence of operators, the convergence is discussed for functions belong to weighted spaces. Further, to prove pointwise convergence Voronovskaya type theorem is taken into consideration. Finally, quantitative estimates for the local approximation are discussed.</description><identifier>ISSN: 2314-8896</identifier><identifier>EISSN: 2314-8888</identifier><identifier>DOI: 10.1155/2020/5090282</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Approximation ; Basis functions ; Construction ; Convergence ; Equality ; Mathematical analysis ; Mathematical functions ; Operators ; Scholarships &amp; fellowships</subject><ispartof>Journal of function spaces, 2020, Vol.2020 (2020), p.1-7</ispartof><rights>Copyright © 2020 M. Qasim et al.</rights><rights>Copyright © 2020 M. Qasim et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103</citedby><cites>FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103</cites><orcidid>0000-0003-4759-7441 ; 0000-0001-9290-1313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548294148/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548294148?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Hazarika, Bipan</contributor><creatorcontrib>Raina, Princess</creatorcontrib><creatorcontrib>Abbas, Zaheer</creatorcontrib><creatorcontrib>Khan, Asif</creatorcontrib><creatorcontrib>Qasim, M.</creatorcontrib><creatorcontrib>Cai, Qing-Bo</creatorcontrib><title>Rate of Approximation for Modified Lupaş-Jain-Beta Operators</title><title>Journal of function spaces</title><description>The main intent of this paper is to innovate a new construction of modified Lupaş-Jain operators with weights of some Beta basis functions whose construction depends on σ such that σ0=0 and infx∈0,∞σ′x≥1. Primarily, for the sequence of operators, the convergence is discussed for functions belong to weighted spaces. Further, to prove pointwise convergence Voronovskaya type theorem is taken into consideration. Finally, quantitative estimates for the local approximation are discussed.</description><subject>Approximation</subject><subject>Basis functions</subject><subject>Construction</subject><subject>Convergence</subject><subject>Equality</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Operators</subject><subject>Scholarships &amp; fellowships</subject><issn>2314-8896</issn><issn>2314-8888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkMFuFDEMhkcIJKq2t57RSD2WoXYm3okPPZQKaNGiSqicI-8kabNqN0NmVpSn4Wl4L7JMVY74Ysv69Pv3X1VHCO8QiU4VKDglYFBGvaj2VIu6MaVePs-8eF0djuMaABAZNdFedfZVJl-nUJ8PQ06P8UGmmDZ1SLn-klwM0bt6uR3k96_ms8RN895PUl8PPsuU8nhQvQpyP_rDp75fffv44ebisllef7q6OF82vVaLqek46IBsWMipladu0fKKVwQOAoD3O2tEWrMWBFSqMMgsneulI0Bo96urWdclWdshF5v5p00S7d9FyrdW8hT7e2-5hbCgtnPETrNZGY9Bi_NIhol6LFrHs1b59_vWj5Ndp23eFPtWkTaKNWpTqLcz1ec0jtmH56sIdpe33eVtn_Iu-MmM38WNkx_xf_SbmfaF8UH-0WhId9z-ARTJhhk</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Raina, Princess</creator><creator>Abbas, Zaheer</creator><creator>Khan, Asif</creator><creator>Qasim, M.</creator><creator>Cai, Qing-Bo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4759-7441</orcidid><orcidid>https://orcid.org/0000-0001-9290-1313</orcidid></search><sort><creationdate>2020</creationdate><title>Rate of Approximation for Modified Lupaş-Jain-Beta Operators</title><author>Raina, Princess ; Abbas, Zaheer ; Khan, Asif ; Qasim, M. ; Cai, Qing-Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Basis functions</topic><topic>Construction</topic><topic>Convergence</topic><topic>Equality</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Operators</topic><topic>Scholarships &amp; fellowships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raina, Princess</creatorcontrib><creatorcontrib>Abbas, Zaheer</creatorcontrib><creatorcontrib>Khan, Asif</creatorcontrib><creatorcontrib>Qasim, M.</creatorcontrib><creatorcontrib>Cai, Qing-Bo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Open Access Journals</collection><jtitle>Journal of function spaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raina, Princess</au><au>Abbas, Zaheer</au><au>Khan, Asif</au><au>Qasim, M.</au><au>Cai, Qing-Bo</au><au>Hazarika, Bipan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate of Approximation for Modified Lupaş-Jain-Beta Operators</atitle><jtitle>Journal of function spaces</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2314-8896</issn><eissn>2314-8888</eissn><abstract>The main intent of this paper is to innovate a new construction of modified Lupaş-Jain operators with weights of some Beta basis functions whose construction depends on σ such that σ0=0 and infx∈0,∞σ′x≥1. Primarily, for the sequence of operators, the convergence is discussed for functions belong to weighted spaces. Further, to prove pointwise convergence Voronovskaya type theorem is taken into consideration. Finally, quantitative estimates for the local approximation are discussed.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/5090282</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4759-7441</orcidid><orcidid>https://orcid.org/0000-0001-9290-1313</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-8896
ispartof Journal of function spaces, 2020, Vol.2020 (2020), p.1-7
issn 2314-8896
2314-8888
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_930f6537d59d498b8e1f4ade158955c1
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database
subjects Approximation
Basis functions
Construction
Convergence
Equality
Mathematical analysis
Mathematical functions
Operators
Scholarships & fellowships
title Rate of Approximation for Modified Lupaş-Jain-Beta Operators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate%20of%20Approximation%20for%20Modified%20Lupa%C5%9F-Jain-Beta%20Operators&rft.jtitle=Journal%20of%20function%20spaces&rft.au=Raina,%20Princess&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2314-8896&rft.eissn=2314-8888&rft_id=info:doi/10.1155/2020/5090282&rft_dat=%3Cproquest_doaj_%3E2548294148%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548294148&rft_id=info:pmid/&rfr_iscdi=true