Loading…
Rate of Approximation for Modified Lupaş-Jain-Beta Operators
The main intent of this paper is to innovate a new construction of modified Lupaş-Jain operators with weights of some Beta basis functions whose construction depends on σ such that σ0=0 and infx∈0,∞σ′x≥1. Primarily, for the sequence of operators, the convergence is discussed for functions belong to...
Saved in:
Published in: | Journal of function spaces 2020, Vol.2020 (2020), p.1-7 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103 |
container_end_page | 7 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Journal of function spaces |
container_volume | 2020 |
creator | Raina, Princess Abbas, Zaheer Khan, Asif Qasim, M. Cai, Qing-Bo |
description | The main intent of this paper is to innovate a new construction of modified Lupaş-Jain operators with weights of some Beta basis functions whose construction depends on σ such that σ0=0 and infx∈0,∞σ′x≥1. Primarily, for the sequence of operators, the convergence is discussed for functions belong to weighted spaces. Further, to prove pointwise convergence Voronovskaya type theorem is taken into consideration. Finally, quantitative estimates for the local approximation are discussed. |
doi_str_mv | 10.1155/2020/5090282 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_930f6537d59d498b8e1f4ade158955c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_930f6537d59d498b8e1f4ade158955c1</doaj_id><sourcerecordid>2548294148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103</originalsourceid><addsrcrecordid>eNqFkMFuFDEMhkcIJKq2t57RSD2WoXYm3okPPZQKaNGiSqicI-8kabNqN0NmVpSn4Wl4L7JMVY74Ysv69Pv3X1VHCO8QiU4VKDglYFBGvaj2VIu6MaVePs-8eF0djuMaABAZNdFedfZVJl-nUJ8PQ06P8UGmmDZ1SLn-klwM0bt6uR3k96_ms8RN895PUl8PPsuU8nhQvQpyP_rDp75fffv44ebisllef7q6OF82vVaLqek46IBsWMipladu0fKKVwQOAoD3O2tEWrMWBFSqMMgsneulI0Bo96urWdclWdshF5v5p00S7d9FyrdW8hT7e2-5hbCgtnPETrNZGY9Bi_NIhol6LFrHs1b59_vWj5Ndp23eFPtWkTaKNWpTqLcz1ec0jtmH56sIdpe33eVtn_Iu-MmM38WNkx_xf_SbmfaF8UH-0WhId9z-ARTJhhk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548294148</pqid></control><display><type>article</type><title>Rate of Approximation for Modified Lupaş-Jain-Beta Operators</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Raina, Princess ; Abbas, Zaheer ; Khan, Asif ; Qasim, M. ; Cai, Qing-Bo</creator><contributor>Hazarika, Bipan</contributor><creatorcontrib>Raina, Princess ; Abbas, Zaheer ; Khan, Asif ; Qasim, M. ; Cai, Qing-Bo ; Hazarika, Bipan</creatorcontrib><description>The main intent of this paper is to innovate a new construction of modified Lupaş-Jain operators with weights of some Beta basis functions whose construction depends on σ such that σ0=0 and infx∈0,∞σ′x≥1. Primarily, for the sequence of operators, the convergence is discussed for functions belong to weighted spaces. Further, to prove pointwise convergence Voronovskaya type theorem is taken into consideration. Finally, quantitative estimates for the local approximation are discussed.</description><identifier>ISSN: 2314-8896</identifier><identifier>EISSN: 2314-8888</identifier><identifier>DOI: 10.1155/2020/5090282</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Approximation ; Basis functions ; Construction ; Convergence ; Equality ; Mathematical analysis ; Mathematical functions ; Operators ; Scholarships & fellowships</subject><ispartof>Journal of function spaces, 2020, Vol.2020 (2020), p.1-7</ispartof><rights>Copyright © 2020 M. Qasim et al.</rights><rights>Copyright © 2020 M. Qasim et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103</citedby><cites>FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103</cites><orcidid>0000-0003-4759-7441 ; 0000-0001-9290-1313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548294148/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548294148?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Hazarika, Bipan</contributor><creatorcontrib>Raina, Princess</creatorcontrib><creatorcontrib>Abbas, Zaheer</creatorcontrib><creatorcontrib>Khan, Asif</creatorcontrib><creatorcontrib>Qasim, M.</creatorcontrib><creatorcontrib>Cai, Qing-Bo</creatorcontrib><title>Rate of Approximation for Modified Lupaş-Jain-Beta Operators</title><title>Journal of function spaces</title><description>The main intent of this paper is to innovate a new construction of modified Lupaş-Jain operators with weights of some Beta basis functions whose construction depends on σ such that σ0=0 and infx∈0,∞σ′x≥1. Primarily, for the sequence of operators, the convergence is discussed for functions belong to weighted spaces. Further, to prove pointwise convergence Voronovskaya type theorem is taken into consideration. Finally, quantitative estimates for the local approximation are discussed.</description><subject>Approximation</subject><subject>Basis functions</subject><subject>Construction</subject><subject>Convergence</subject><subject>Equality</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Operators</subject><subject>Scholarships & fellowships</subject><issn>2314-8896</issn><issn>2314-8888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkMFuFDEMhkcIJKq2t57RSD2WoXYm3okPPZQKaNGiSqicI-8kabNqN0NmVpSn4Wl4L7JMVY74Ysv69Pv3X1VHCO8QiU4VKDglYFBGvaj2VIu6MaVePs-8eF0djuMaABAZNdFedfZVJl-nUJ8PQ06P8UGmmDZ1SLn-klwM0bt6uR3k96_ms8RN895PUl8PPsuU8nhQvQpyP_rDp75fffv44ebisllef7q6OF82vVaLqek46IBsWMipladu0fKKVwQOAoD3O2tEWrMWBFSqMMgsneulI0Bo96urWdclWdshF5v5p00S7d9FyrdW8hT7e2-5hbCgtnPETrNZGY9Bi_NIhol6LFrHs1b59_vWj5Ndp23eFPtWkTaKNWpTqLcz1ec0jtmH56sIdpe33eVtn_Iu-MmM38WNkx_xf_SbmfaF8UH-0WhId9z-ARTJhhk</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Raina, Princess</creator><creator>Abbas, Zaheer</creator><creator>Khan, Asif</creator><creator>Qasim, M.</creator><creator>Cai, Qing-Bo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4759-7441</orcidid><orcidid>https://orcid.org/0000-0001-9290-1313</orcidid></search><sort><creationdate>2020</creationdate><title>Rate of Approximation for Modified Lupaş-Jain-Beta Operators</title><author>Raina, Princess ; Abbas, Zaheer ; Khan, Asif ; Qasim, M. ; Cai, Qing-Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Basis functions</topic><topic>Construction</topic><topic>Convergence</topic><topic>Equality</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Operators</topic><topic>Scholarships & fellowships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raina, Princess</creatorcontrib><creatorcontrib>Abbas, Zaheer</creatorcontrib><creatorcontrib>Khan, Asif</creatorcontrib><creatorcontrib>Qasim, M.</creatorcontrib><creatorcontrib>Cai, Qing-Bo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Open Access Journals</collection><jtitle>Journal of function spaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raina, Princess</au><au>Abbas, Zaheer</au><au>Khan, Asif</au><au>Qasim, M.</au><au>Cai, Qing-Bo</au><au>Hazarika, Bipan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate of Approximation for Modified Lupaş-Jain-Beta Operators</atitle><jtitle>Journal of function spaces</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2314-8896</issn><eissn>2314-8888</eissn><abstract>The main intent of this paper is to innovate a new construction of modified Lupaş-Jain operators with weights of some Beta basis functions whose construction depends on σ such that σ0=0 and infx∈0,∞σ′x≥1. Primarily, for the sequence of operators, the convergence is discussed for functions belong to weighted spaces. Further, to prove pointwise convergence Voronovskaya type theorem is taken into consideration. Finally, quantitative estimates for the local approximation are discussed.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/5090282</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4759-7441</orcidid><orcidid>https://orcid.org/0000-0001-9290-1313</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-8896 |
ispartof | Journal of function spaces, 2020, Vol.2020 (2020), p.1-7 |
issn | 2314-8896 2314-8888 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_930f6537d59d498b8e1f4ade158955c1 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database |
subjects | Approximation Basis functions Construction Convergence Equality Mathematical analysis Mathematical functions Operators Scholarships & fellowships |
title | Rate of Approximation for Modified Lupaş-Jain-Beta Operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate%20of%20Approximation%20for%20Modified%20Lupa%C5%9F-Jain-Beta%20Operators&rft.jtitle=Journal%20of%20function%20spaces&rft.au=Raina,%20Princess&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2314-8896&rft.eissn=2314-8888&rft_id=info:doi/10.1155/2020/5090282&rft_dat=%3Cproquest_doaj_%3E2548294148%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-79f4f1989a5d2be57639b9b50d0f00ee8896554494a101222be199a7dca750103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548294148&rft_id=info:pmid/&rfr_iscdi=true |