Loading…
Quantitative Imaging of Biochemistry in Situ and at the Nanoscale
Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of...
Saved in:
Published in: | ACS central science 2020-11, Vol.6 (11), p.1938-1954 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423 |
---|---|
cites | cdi_FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423 |
container_end_page | 1954 |
container_issue | 11 |
container_start_page | 1938 |
container_title | ACS central science |
container_volume | 6 |
creator | Krishnan, Yamuna Zou, Junyi Jani, Maulik S |
description | Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of organelles is inextricably linked to disease. Despite their vital roles in cellular homeostasis, there are large gaps in our knowledge of organellar chemical composition largely from a lack of suitable probes. In this Outlook, we describe how, using organelle-targeted ratiometric probes, one can quantitatively image the lumenal chemical composition and biochemical activity inside organelles. We discuss how excellent fluorescent detection chemistries applied largely to the cytosol may be expanded to study organelles by chemical imaging at subcellular resolution in live cells. DNA-based reporters are a new and versatile platform to enable such approaches because the resultant probes have precise ratiometry and accurate subcellular targeting and are able to map multiple chemicals simultaneously. Quantitatively mapping lumenal ions and biochemical activity can drive the discovery of new biology and biomedical applications. |
doi_str_mv | 10.1021/acscentsci.0c01076 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9357f898c8d6447ba47619e9b2faafc0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9357f898c8d6447ba47619e9b2faafc0</doaj_id><sourcerecordid>2467620771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEolXpF-CAcuSyy_hP4viCVCpaVqqoEHC2Js5416tsXGynUr89Lrss9NKTLfu934zeq6q3DJYMOPuANlmacrJ-CRYYqPZFdcqFkgulG_byeJfipDpPaQsATLZtw9Xr6kQIriRX7LS6-DbjlH3G7O-pXu1w7ad1HVz9yQe7oZ1POT7Ufqq_-zzXOA015jpvqP6KU0gWR3pTvXI4Jjo_nGfVz6vPPy6_LG5ur1eXFzcLbEDlhRgc7xU1verKbAlCEu9IDx1xQAu9E4N2kglpEUCS1qAddc5pzd3AJBdn1WrPHQJuzV30O4wPJqA3fx5CXBuM2duRjBaNcp3ubDe0UqoepWqZJt1zh-gsFNbHPetu7nc0PAYZcXwCffoz-Y1Zh3ujFLQl6gJ4fwDE8GumlE1JytI44kRhTobLVrUclGJFyvdSG0NKkdxxDAPzWKX5V6U5VFlM7_5f8Gj5W1wRLPeCYjbbMMepZP8c8TfV9KyA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467620771</pqid></control><display><type>article</type><title>Quantitative Imaging of Biochemistry in Situ and at the Nanoscale</title><source>Open Access: PubMed Central</source><source>American Chemical Society (ACS) Open Access</source><creator>Krishnan, Yamuna ; Zou, Junyi ; Jani, Maulik S</creator><creatorcontrib>Krishnan, Yamuna ; Zou, Junyi ; Jani, Maulik S</creatorcontrib><description>Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of organelles is inextricably linked to disease. Despite their vital roles in cellular homeostasis, there are large gaps in our knowledge of organellar chemical composition largely from a lack of suitable probes. In this Outlook, we describe how, using organelle-targeted ratiometric probes, one can quantitatively image the lumenal chemical composition and biochemical activity inside organelles. We discuss how excellent fluorescent detection chemistries applied largely to the cytosol may be expanded to study organelles by chemical imaging at subcellular resolution in live cells. DNA-based reporters are a new and versatile platform to enable such approaches because the resultant probes have precise ratiometry and accurate subcellular targeting and are able to map multiple chemicals simultaneously. Quantitatively mapping lumenal ions and biochemical activity can drive the discovery of new biology and biomedical applications.</description><identifier>ISSN: 2374-7943</identifier><identifier>EISSN: 2374-7951</identifier><identifier>DOI: 10.1021/acscentsci.0c01076</identifier><identifier>PMID: 33274271</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Outlook</subject><ispartof>ACS central science, 2020-11, Vol.6 (11), p.1938-1954</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423</citedby><cites>FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423</cites><orcidid>0000-0001-5282-8852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscentsci.0c01076$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscentsci.0c01076$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27079,27923,27924,53790,53792,56761,56811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33274271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishnan, Yamuna</creatorcontrib><creatorcontrib>Zou, Junyi</creatorcontrib><creatorcontrib>Jani, Maulik S</creatorcontrib><title>Quantitative Imaging of Biochemistry in Situ and at the Nanoscale</title><title>ACS central science</title><addtitle>ACS Cent. Sci</addtitle><description>Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of organelles is inextricably linked to disease. Despite their vital roles in cellular homeostasis, there are large gaps in our knowledge of organellar chemical composition largely from a lack of suitable probes. In this Outlook, we describe how, using organelle-targeted ratiometric probes, one can quantitatively image the lumenal chemical composition and biochemical activity inside organelles. We discuss how excellent fluorescent detection chemistries applied largely to the cytosol may be expanded to study organelles by chemical imaging at subcellular resolution in live cells. DNA-based reporters are a new and versatile platform to enable such approaches because the resultant probes have precise ratiometry and accurate subcellular targeting and are able to map multiple chemicals simultaneously. Quantitatively mapping lumenal ions and biochemical activity can drive the discovery of new biology and biomedical applications.</description><subject>Outlook</subject><issn>2374-7943</issn><issn>2374-7951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxSMEolXpF-CAcuSyy_hP4viCVCpaVqqoEHC2Js5416tsXGynUr89Lrss9NKTLfu934zeq6q3DJYMOPuANlmacrJ-CRYYqPZFdcqFkgulG_byeJfipDpPaQsATLZtw9Xr6kQIriRX7LS6-DbjlH3G7O-pXu1w7ad1HVz9yQe7oZ1POT7Ufqq_-zzXOA015jpvqP6KU0gWR3pTvXI4Jjo_nGfVz6vPPy6_LG5ur1eXFzcLbEDlhRgc7xU1verKbAlCEu9IDx1xQAu9E4N2kglpEUCS1qAddc5pzd3AJBdn1WrPHQJuzV30O4wPJqA3fx5CXBuM2duRjBaNcp3ubDe0UqoepWqZJt1zh-gsFNbHPetu7nc0PAYZcXwCffoz-Y1Zh3ujFLQl6gJ4fwDE8GumlE1JytI44kRhTobLVrUclGJFyvdSG0NKkdxxDAPzWKX5V6U5VFlM7_5f8Gj5W1wRLPeCYjbbMMepZP8c8TfV9KyA</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Krishnan, Yamuna</creator><creator>Zou, Junyi</creator><creator>Jani, Maulik S</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5282-8852</orcidid></search><sort><creationdate>20201125</creationdate><title>Quantitative Imaging of Biochemistry in Situ and at the Nanoscale</title><author>Krishnan, Yamuna ; Zou, Junyi ; Jani, Maulik S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Outlook</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Yamuna</creatorcontrib><creatorcontrib>Zou, Junyi</creatorcontrib><creatorcontrib>Jani, Maulik S</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS central science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnan, Yamuna</au><au>Zou, Junyi</au><au>Jani, Maulik S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Imaging of Biochemistry in Situ and at the Nanoscale</atitle><jtitle>ACS central science</jtitle><addtitle>ACS Cent. Sci</addtitle><date>2020-11-25</date><risdate>2020</risdate><volume>6</volume><issue>11</issue><spage>1938</spage><epage>1954</epage><pages>1938-1954</pages><issn>2374-7943</issn><eissn>2374-7951</eissn><abstract>Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of organelles is inextricably linked to disease. Despite their vital roles in cellular homeostasis, there are large gaps in our knowledge of organellar chemical composition largely from a lack of suitable probes. In this Outlook, we describe how, using organelle-targeted ratiometric probes, one can quantitatively image the lumenal chemical composition and biochemical activity inside organelles. We discuss how excellent fluorescent detection chemistries applied largely to the cytosol may be expanded to study organelles by chemical imaging at subcellular resolution in live cells. DNA-based reporters are a new and versatile platform to enable such approaches because the resultant probes have precise ratiometry and accurate subcellular targeting and are able to map multiple chemicals simultaneously. Quantitatively mapping lumenal ions and biochemical activity can drive the discovery of new biology and biomedical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33274271</pmid><doi>10.1021/acscentsci.0c01076</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5282-8852</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2374-7943 |
ispartof | ACS central science, 2020-11, Vol.6 (11), p.1938-1954 |
issn | 2374-7943 2374-7951 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9357f898c8d6447ba47619e9b2faafc0 |
source | Open Access: PubMed Central; American Chemical Society (ACS) Open Access |
subjects | Outlook |
title | Quantitative Imaging of Biochemistry in Situ and at the Nanoscale |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Imaging%20of%20Biochemistry%20in%20Situ%20and%20at%20the%20Nanoscale&rft.jtitle=ACS%20central%20science&rft.au=Krishnan,%20Yamuna&rft.date=2020-11-25&rft.volume=6&rft.issue=11&rft.spage=1938&rft.epage=1954&rft.pages=1938-1954&rft.issn=2374-7943&rft.eissn=2374-7951&rft_id=info:doi/10.1021/acscentsci.0c01076&rft_dat=%3Cproquest_doaj_%3E2467620771%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2467620771&rft_id=info:pmid/33274271&rfr_iscdi=true |