Loading…

Quantitative Imaging of Biochemistry in Situ and at the Nanoscale

Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of...

Full description

Saved in:
Bibliographic Details
Published in:ACS central science 2020-11, Vol.6 (11), p.1938-1954
Main Authors: Krishnan, Yamuna, Zou, Junyi, Jani, Maulik S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423
cites cdi_FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423
container_end_page 1954
container_issue 11
container_start_page 1938
container_title ACS central science
container_volume 6
creator Krishnan, Yamuna
Zou, Junyi
Jani, Maulik S
description Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of organelles is inextricably linked to disease. Despite their vital roles in cellular homeostasis, there are large gaps in our knowledge of organellar chemical composition largely from a lack of suitable probes. In this Outlook, we describe how, using organelle-targeted ratiometric probes, one can quantitatively image the lumenal chemical composition and biochemical activity inside organelles. We discuss how excellent fluorescent detection chemistries applied largely to the cytosol may be expanded to study organelles by chemical imaging at subcellular resolution in live cells. DNA-based reporters are a new and versatile platform to enable such approaches because the resultant probes have precise ratiometry and accurate subcellular targeting and are able to map multiple chemicals simultaneously. Quantitatively mapping lumenal ions and biochemical activity can drive the discovery of new biology and biomedical applications.
doi_str_mv 10.1021/acscentsci.0c01076
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9357f898c8d6447ba47619e9b2faafc0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9357f898c8d6447ba47619e9b2faafc0</doaj_id><sourcerecordid>2467620771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEolXpF-CAcuSyy_hP4viCVCpaVqqoEHC2Js5416tsXGynUr89Lrss9NKTLfu934zeq6q3DJYMOPuANlmacrJ-CRYYqPZFdcqFkgulG_byeJfipDpPaQsATLZtw9Xr6kQIriRX7LS6-DbjlH3G7O-pXu1w7ad1HVz9yQe7oZ1POT7Ufqq_-zzXOA015jpvqP6KU0gWR3pTvXI4Jjo_nGfVz6vPPy6_LG5ur1eXFzcLbEDlhRgc7xU1verKbAlCEu9IDx1xQAu9E4N2kglpEUCS1qAddc5pzd3AJBdn1WrPHQJuzV30O4wPJqA3fx5CXBuM2duRjBaNcp3ubDe0UqoepWqZJt1zh-gsFNbHPetu7nc0PAYZcXwCffoz-Y1Zh3ujFLQl6gJ4fwDE8GumlE1JytI44kRhTobLVrUclGJFyvdSG0NKkdxxDAPzWKX5V6U5VFlM7_5f8Gj5W1wRLPeCYjbbMMepZP8c8TfV9KyA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467620771</pqid></control><display><type>article</type><title>Quantitative Imaging of Biochemistry in Situ and at the Nanoscale</title><source>Open Access: PubMed Central</source><source>American Chemical Society (ACS) Open Access</source><creator>Krishnan, Yamuna ; Zou, Junyi ; Jani, Maulik S</creator><creatorcontrib>Krishnan, Yamuna ; Zou, Junyi ; Jani, Maulik S</creatorcontrib><description>Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of organelles is inextricably linked to disease. Despite their vital roles in cellular homeostasis, there are large gaps in our knowledge of organellar chemical composition largely from a lack of suitable probes. In this Outlook, we describe how, using organelle-targeted ratiometric probes, one can quantitatively image the lumenal chemical composition and biochemical activity inside organelles. We discuss how excellent fluorescent detection chemistries applied largely to the cytosol may be expanded to study organelles by chemical imaging at subcellular resolution in live cells. DNA-based reporters are a new and versatile platform to enable such approaches because the resultant probes have precise ratiometry and accurate subcellular targeting and are able to map multiple chemicals simultaneously. Quantitatively mapping lumenal ions and biochemical activity can drive the discovery of new biology and biomedical applications.</description><identifier>ISSN: 2374-7943</identifier><identifier>EISSN: 2374-7951</identifier><identifier>DOI: 10.1021/acscentsci.0c01076</identifier><identifier>PMID: 33274271</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Outlook</subject><ispartof>ACS central science, 2020-11, Vol.6 (11), p.1938-1954</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423</citedby><cites>FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423</cites><orcidid>0000-0001-5282-8852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscentsci.0c01076$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscentsci.0c01076$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27079,27923,27924,53790,53792,56761,56811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33274271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishnan, Yamuna</creatorcontrib><creatorcontrib>Zou, Junyi</creatorcontrib><creatorcontrib>Jani, Maulik S</creatorcontrib><title>Quantitative Imaging of Biochemistry in Situ and at the Nanoscale</title><title>ACS central science</title><addtitle>ACS Cent. Sci</addtitle><description>Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of organelles is inextricably linked to disease. Despite their vital roles in cellular homeostasis, there are large gaps in our knowledge of organellar chemical composition largely from a lack of suitable probes. In this Outlook, we describe how, using organelle-targeted ratiometric probes, one can quantitatively image the lumenal chemical composition and biochemical activity inside organelles. We discuss how excellent fluorescent detection chemistries applied largely to the cytosol may be expanded to study organelles by chemical imaging at subcellular resolution in live cells. DNA-based reporters are a new and versatile platform to enable such approaches because the resultant probes have precise ratiometry and accurate subcellular targeting and are able to map multiple chemicals simultaneously. Quantitatively mapping lumenal ions and biochemical activity can drive the discovery of new biology and biomedical applications.</description><subject>Outlook</subject><issn>2374-7943</issn><issn>2374-7951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxSMEolXpF-CAcuSyy_hP4viCVCpaVqqoEHC2Js5416tsXGynUr89Lrss9NKTLfu934zeq6q3DJYMOPuANlmacrJ-CRYYqPZFdcqFkgulG_byeJfipDpPaQsATLZtw9Xr6kQIriRX7LS6-DbjlH3G7O-pXu1w7ad1HVz9yQe7oZ1POT7Ufqq_-zzXOA015jpvqP6KU0gWR3pTvXI4Jjo_nGfVz6vPPy6_LG5ur1eXFzcLbEDlhRgc7xU1verKbAlCEu9IDx1xQAu9E4N2kglpEUCS1qAddc5pzd3AJBdn1WrPHQJuzV30O4wPJqA3fx5CXBuM2duRjBaNcp3ubDe0UqoepWqZJt1zh-gsFNbHPetu7nc0PAYZcXwCffoz-Y1Zh3ujFLQl6gJ4fwDE8GumlE1JytI44kRhTobLVrUclGJFyvdSG0NKkdxxDAPzWKX5V6U5VFlM7_5f8Gj5W1wRLPeCYjbbMMepZP8c8TfV9KyA</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Krishnan, Yamuna</creator><creator>Zou, Junyi</creator><creator>Jani, Maulik S</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5282-8852</orcidid></search><sort><creationdate>20201125</creationdate><title>Quantitative Imaging of Biochemistry in Situ and at the Nanoscale</title><author>Krishnan, Yamuna ; Zou, Junyi ; Jani, Maulik S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Outlook</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Yamuna</creatorcontrib><creatorcontrib>Zou, Junyi</creatorcontrib><creatorcontrib>Jani, Maulik S</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS central science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnan, Yamuna</au><au>Zou, Junyi</au><au>Jani, Maulik S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Imaging of Biochemistry in Situ and at the Nanoscale</atitle><jtitle>ACS central science</jtitle><addtitle>ACS Cent. Sci</addtitle><date>2020-11-25</date><risdate>2020</risdate><volume>6</volume><issue>11</issue><spage>1938</spage><epage>1954</epage><pages>1938-1954</pages><issn>2374-7943</issn><eissn>2374-7951</eissn><abstract>Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of organelles is inextricably linked to disease. Despite their vital roles in cellular homeostasis, there are large gaps in our knowledge of organellar chemical composition largely from a lack of suitable probes. In this Outlook, we describe how, using organelle-targeted ratiometric probes, one can quantitatively image the lumenal chemical composition and biochemical activity inside organelles. We discuss how excellent fluorescent detection chemistries applied largely to the cytosol may be expanded to study organelles by chemical imaging at subcellular resolution in live cells. DNA-based reporters are a new and versatile platform to enable such approaches because the resultant probes have precise ratiometry and accurate subcellular targeting and are able to map multiple chemicals simultaneously. Quantitatively mapping lumenal ions and biochemical activity can drive the discovery of new biology and biomedical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33274271</pmid><doi>10.1021/acscentsci.0c01076</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5282-8852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2374-7943
ispartof ACS central science, 2020-11, Vol.6 (11), p.1938-1954
issn 2374-7943
2374-7951
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9357f898c8d6447ba47619e9b2faafc0
source Open Access: PubMed Central; American Chemical Society (ACS) Open Access
subjects Outlook
title Quantitative Imaging of Biochemistry in Situ and at the Nanoscale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Imaging%20of%20Biochemistry%20in%20Situ%20and%20at%20the%20Nanoscale&rft.jtitle=ACS%20central%20science&rft.au=Krishnan,%20Yamuna&rft.date=2020-11-25&rft.volume=6&rft.issue=11&rft.spage=1938&rft.epage=1954&rft.pages=1938-1954&rft.issn=2374-7943&rft.eissn=2374-7951&rft_id=info:doi/10.1021/acscentsci.0c01076&rft_dat=%3Cproquest_doaj_%3E2467620771%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a507t-3df2b7e5b782744034e28e9d8e20ac0bf3d9f4134ca004e9909fe8ff992fd1423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2467620771&rft_id=info:pmid/33274271&rfr_iscdi=true